scholarly journals Sequential activation of ETS proteins provides a sustained transcriptional response to EGFR signaling

Development ◽  
2013 ◽  
Vol 140 (13) ◽  
pp. 2746-2754 ◽  
Author(s):  
Arkadi Shwartz ◽  
Shaul Yogev ◽  
Eyal D. Schejter ◽  
Ben-Zion Shilo
2019 ◽  
Author(s):  
Jennifer E. L. Diaz ◽  
Mehmet Eren Ahsen ◽  
Thomas Schaffter ◽  
Xintong Chen ◽  
Ronald B. Realubit ◽  
...  

AbstractOur ability to predict the effects of drug combinations is limited, in part by limited understanding of how the transcriptional response of two monotherapies results in that of their combination. We performed the first analysis of matched time course RNAseq profiling of cells treated with both single drugs and their combinations. The transcriptional signature of the synergistic combination we studied had unique gene expression not seen in either constituent monotherapy. This can be explained mechanistically by the sequential activation of transcription factors in time in the gene regulatory network. The nature of this transcriptional cascade suggests that drug synergy may ensue when the transcriptional responses elicited by two unrelated individual drugs are correlated. We used these results as the basis of a simple prediction algorithm attaining an AUROC of 0.84 in the prediction of synergistic drug combinations in an independent dataset.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jennifer EL Diaz ◽  
Mehmet Eren Ahsen ◽  
Thomas Schaffter ◽  
Xintong Chen ◽  
Ronald B Realubit ◽  
...  

Our ability to discover effective drug combinations is limited, in part by insufficient understanding of how the transcriptional response of two monotherapies results in that of their combination. We analyzed matched time course RNAseq profiling of cells treated with single drugs and their combinations and found that the transcriptional signature of the synergistic combination was unique relative to that of either constituent monotherapy. The sequential activation of transcription factors in time in the gene regulatory network was implicated. The nature of this transcriptional cascade suggests that drug synergy may ensue when the transcriptional responses elicited by two unrelated individual drugs are correlated. We used these results as the basis of a simple prediction algorithm attaining an AUROC of 0.77 in the prediction of synergistic drug combinations in an independent dataset.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
T van Eimeren ◽  
H Siebner ◽  
C Büchel ◽  
M Rijntjes ◽  
C Weiller

2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 2 Registered Report manuscript now accepted for publication at eNeuro. The accepted Stage 1 manuscript is posted here: https://psyarxiv.com/s7dft, and the pre-registration for the project is available here (https://osf.io/fqh8j, 9/11/2019). A link to the final Stage 2 manuscript will be posted after peer review and publication.]] There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day after training), a forgotten memory (8 days after training), and a savings memory (8 days after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the re-activation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-day old) memory, with no co-regulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = .04 95% CI [-.12, .20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.


Sign in / Sign up

Export Citation Format

Share Document