scholarly journals Sall1 balances self-renewal and differentiation of renal progenitor cells

Development ◽  
2014 ◽  
Vol 141 (5) ◽  
pp. 1047-1058 ◽  
Author(s):  
J. M. Basta ◽  
L. Robbins ◽  
S. M. Kiefer ◽  
D. Dorsett ◽  
M. Rauchman
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Md Shaifur Rahman ◽  
Wasco Wruck ◽  
Lucas-Sebastian Spitzhorn ◽  
Lisa Nguyen ◽  
Martina Bohndorf ◽  
...  

2019 ◽  
Author(s):  
Md Shaifur Rahman ◽  
Wasco Wruck ◽  
Lucas-Sebastian Spitzhorn ◽  
Martina Bohndorf ◽  
Soraia Martins ◽  
...  

AbstractBackgroundHuman urine is now recognised as a non-invasive source of stem cells with regeneration potential. These cells are mesenchymal stem cells but their detailed molecular and cellular identities are poorly defined. Furthermore, unlike the mouse, the gene regulatory network driving self-renewal and differentiation into functional renal cells in vitro remain unresolved.MethodsWe isolated urine stem cells from 10 individuals from both genders and distinct ages, characterized them as renal progenitor cells and explored the gene regulatory network sustaining self-renewal.ResultsThese cells express pluripotency-associated proteins-TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133. Expression of pluripotency-associated proteins enabled rapid reprogramming into iPSCs using episomal-based plasmids without pathway perturbations. Transcriptome analysis revealed expression of a plethora of nephrogenesis-related genes such as SIX2, OSR1, CITED1, NPHS2, NPHS1, PAX2, SALL1, AQP2, EYA1, SLC12A1 and UMOD. As expected, the cells transport Albumin by endocytosis. Based on this, we refer to these cells as urine derived renal progenitor cells-UdRPCs. Associated GO-term analysis of UdRPCs and UdRPC-iPSCs underlined their renal identity and functionality. Upon differentiation by WNT activation using the GSK3β-inhibitor (CHIR99021), transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes-AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative regulator of self-renewal and differentiation in UdRPCs. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway.ConclusionThis in vitro model and the data presented should lay the foundation for studying nephrogenesis in man.Significance StatementHuman urine is a non-invasive source of stem cells with regeneration potential. Here, we investigated the cellular and molecular identities, and the gene regulation driving self-renewal and differentiation of these cells in vitro. These cells express pluripotency-associated markers enabling easy reprogramming. Based on the expression of renal associated genes, proteins and functionality, we refer to these cells as urine derived renal progenitor cells-UdRPCs. CHIR99021-induced differentiation of UdRPCs activated WNT-related genes-AXIN2, JUN and NKD1. Protein interaction network identified JUN as a putative regulator of differentiation whereas self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3. Our data will enhance understanding of the molecular identities of UdRPCs, and enable the generation of renal disease models in vitro and eventually kidney-associated regenerative therapies.


2021 ◽  
pp. 101699
Author(s):  
Chih-Yang Hsu ◽  
Pei-Ling Chi ◽  
Hsin-Yu Chen ◽  
Shih-Hsiang Ou ◽  
Kang-Ju Chou ◽  
...  

2013 ◽  
Vol 49 (3) ◽  
pp. 235-247
Author(s):  
Hayam Abdel Meguid El Aggan ◽  
Mona Abdel Kader Salem ◽  
Nahla Mohamed Gamal Farahat ◽  
Ahmad Fathy El-Koraie ◽  
Ghaly Abd Al-Rahim Mohammed Kotb

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68296 ◽  
Author(s):  
Fabio Sallustio ◽  
Grazia Serino ◽  
Vincenzo Costantino ◽  
Claudia Curci ◽  
Sharon N. Cox ◽  
...  

2013 ◽  
Vol 29 (4) ◽  
pp. 665-672 ◽  
Author(s):  
Paul J. D. Winyard ◽  
Karen L. Price

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Elís Rosélia Dutra de Freitas Siqueira Silva ◽  
Napoleão Martins Argôlo Neto ◽  
Dayseanny de Oliveira Bezerra ◽  
Sandra Maria Mendes de Moura Dantas ◽  
Lucilene dos Santos Silva ◽  
...  

In vitro senescence of multipotent cells has been commonly associated with DNA damage induced by oxidative stress. These changes may vary according to the sources of production and the studied lineages, which raises questions about the effect of growing time on genetic stability. This study is aimed at evaluating the evolution of genetic stability, viability, and oxidative stress of bone marrow mesenchymal stem cells (MSCBMsu) and renal progenitor cells of the renal cortex (RPCsu) of swine (Sus scrofa domesticus) in culture passages. P2, P5, and P9 were used for MSCBMsu and P1, P2, and P3 for RPCsu obtained by thawing. The experimental groups were submitted to MTT, apoptosis and necrosis assays, comet test, and reactive substance measurements of thiobarbituric acid (TBARS), nitrite, reduced glutathione (GSH), and catalase. The MTT test curve showed a mean viability of 1.14±0.62 and 1.12±0.54, respectively, for MSCBMsu and RPCsu. The percentages of MSCBMsu and RPCsu were presented, respectively, for apoptosis, an irregular and descending behavior, and necrosis, ascending and irregular. The DNA damage index showed higher intensity among the MSCBMsu in the P5 and P9 passages (p<0.05). In the TBARS evaluation, there was variation among the lines of RPCsu and MSCBMsu, presenting the last most significant variations (p<0.05). In the nitrite values, we identified only among the lines, in the passages P1 and P2, with the highest averages displayed by the MSCBMsu lineage (p<0.05). The measurement of antioxidant system activity showed high standards, identifying differences only for GSH values, in the RPCsu lineage, in P3 (p<0.05). This study suggests that the maintenance of cell culture in the long term induces lower regulation of oxidative stress, and RPCsu presents higher genetic stability and lower oxidative stress than MSCBMsu during in vitro expansion.


2018 ◽  
Vol 33 (suppl_1) ◽  
pp. i328-i328
Author(s):  
Anna Peired ◽  
Giulia Antonelli ◽  
Maria Lucia Angelotti ◽  
Alessandro Sisti ◽  
Marco Allinovi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document