‘Early’ mammalian myoblasts are resistant to phorbol ester-induced block of differentiation

Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 65-69 ◽  
Author(s):  
G. Cossu ◽  
G. Ranaldi ◽  
M.I. Senni ◽  
M. Molinaro ◽  
E. Vivarelli

Mesenchymal cells were isolated from somites and limbs of mouse embryos at different developmental stages. When grown in tissue culture, some of the cells underwent muscle differentiation as indicated by synthesis of sarcomeric myosin, acetylcholine receptor and, in the case of limb cells, fusion into multinucleated myotubes. When the tumour promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) was added to these cultures, it caused differential effects, depending upon the age of the embryo from which cells were isolated. In cultures of somites or limb bud from embryos up to 12 days post coitum, TPA did not interfere with the appearance of differentiated muscle cells. When TPA was added to cultures from older embryos, it inhibited muscle differentiation with an efficiency which increased with the age of the embryo, reaching about 90% inhibition at 15 days. After this period, a new population of myogenic cells appeared in the limb, which were able to differentiate in the presence of TPA and represented the great majority of myoblasts after day 18 of embryonic development. The simplest interpretation of these data can be based on the existence of three major classes of myogenic cell precursors, which appear sequentially during muscle histogenesis: ‘early’ myoblasts, which appear resistant to tumour promoters; ‘late’ myoblasts, whose differentiation is inhibited by tumour promoters and ‘satellite’ cells which, like early myoblasts, show no sensitivity to TPA.

1988 ◽  
Vol 107 (6) ◽  
pp. 2191-2197 ◽  
Author(s):  
E Vivarelli ◽  
W E Brown ◽  
R G Whalen ◽  
G Cossu

The developmental pattern of slow myosin expression has been studied in mouse embryos from the somitic stage to the period of secondary fiber formation and in myogenic cells, cultured from the same developmental stages. The results obtained, using a combination of different polyclonal and monoclonal antibodies, indicate that slow myosin is coexpressed in virtually all the cells that express embryonic (fast) myosin in somites and limb buds in vivo as well as in culture. On the contrary fetal or late myoblasts (from 15-d-old embryos) express in culture only embryonic (fast) myosin. At this stage, muscle cells in vivo, as already shown (Crow, M.T., and F.A. Stockdale. 1986. Dev. Biol. 113:238-254; Dhoot, G.K. 1986. Muscle & Nerve. 9:155-164; Draeger, A., A.G. Weeds, and R.B. Fitzsimons. 1987. J. Neurol. Sci. 81:19-43; Miller, J.B., and F.A. Stockdale. 1986. J. Cell Biol. 103:2197-2208), consist of primary myotubes, which express both myosins, and secondary myotubes, which express preferentially embryonic (fast) myosin. Under no circumstance neonatal or adult fast myosins were detected. Western blot analysis confirmed the immunocytochemical data. These results suggest that embryonic myoblasts in mammals are all committed to the mixed embryonic-(fast) slow lineage and, accordingly, all primary fibers express both myosins, whereas fetal myoblasts mostly belong to the embryonic (fast) lineage and likely generate fibers containing only embryonic (fast) myosin. The relationship with current models of avian myogenesis are discussed.


2016 ◽  
Vol 39 (7) ◽  
pp. 1163-1172 ◽  
Author(s):  
Simzar Hosseinzadeh ◽  
Matin Mahmoudifard ◽  
Farzaneh Mohamadyar-Toupkanlou ◽  
Masomeh Dodel ◽  
Atena Hajarizadeh ◽  
...  

Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 267-275
Author(s):  
C. P. Cottrill ◽  
Paul T. Sharpe ◽  
Lewis Wolpert

A technique which identifies cells differing in surface character, aqueous two-phase partition using thin-layer countercurrent distribution (TLCCD), has been used to study differentiation and pattern formation in the developing chick limb bud. The TLCCD profiles of cell populations, derived from various regions of morphologically undifferentiated mesenchyme from three different stages of limb development, have been compared. At no stage, or location, has the population been found to be homogeneous. Cells from progress zones and more proximal regions could all be resolved into several populations. The populations from progress zones at three different developmental stages were qualitatively similar but differed in the proportions of cells in each. The most striking differences in cell populations were those obtained from the most proximal region of the limb, closest to the flank, which represents the developmentally most advanced region.


2012 ◽  
Vol 79 (11) ◽  
pp. 785-794 ◽  
Author(s):  
Bo Jin ◽  
Keiji Mochida ◽  
Atsuo Ogura ◽  
Chihiro Koshimoto ◽  
Kazutsugu Matsukawa ◽  
...  

2020 ◽  
Author(s):  
Gist H. Farr ◽  
Bingsi Li ◽  
Maurizio Risolino ◽  
Nathan M. Johnson ◽  
Zizhen Yao ◽  
...  

SummaryVertebrate skeletal muscles are composed of both slow-twitch and fast-twitch fiber types. How the differentiation of distinct fiber types is activated during embryogenesis is not well characterized. Skeletal muscle differentiation is initiated by the activity of the myogenic basic helix-loop-helix (bHLH) transcription factors Myf5, Myod1, Myf6, and Myog. Myod1 functions as a muscle master regulatory factor and directly activates muscle differentiation genes, including those specific to both slow and fast muscle fibers. Our previous studies showed that Pbx TALE-class homeodomain proteins bind with Myod1 on the promoter of the zebrafish fast muscle gene mylpfa and are required for proper activation of mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Pbx proteins have also been shown to bind regulatory regions of muscle differentiation genes in mammalian muscle cells in culture. Here, we use new zebrafish mutant strains to confirm the essential roles of zebrafish Pbx factors in embryonic fast muscle differentiation. Furthermore, we examine the requirements for Pbx genes in mouse embryonic skeletal muscle differentiation, an area that has not been investigated in the mammalian embryo. Removing Pbx1 function from skeletal muscle in Myf5Cre/+;Pbx1fl/fl mouse embryos has minor effects on embryonic muscle development. However, concomitantly deleting Pbx2 function in Myf5Cre/+;Pbx1fl/fl;Pbx2-/- mouse embryos causes delayed activation and reduced expression of fast muscle differentiation genes. In the mouse, Pbx1/Pbx2-dependent fast muscle genes closely match those that have been previously shown to be dependent on murine Six1 and Six4. This work establishes evolutionarily conserved requirements for Pbx factors in embryonic fast muscle differentiation. Our studies are revealing how Pbx homeodomain proteins help direct specific cellular differentiation pathways.


Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 253-266
Author(s):  
P. P. L. Tam

The caudal end of the embryonic axis consists of the primitive streak and the tail bud. Small fragments of this caudal tissue were transplanted from mouse embryos of various developmental stages to the kidney capsule in order to test their histogenetic capacity. The variety of mature tissues obtained from these small fragments was similar to that obtained by grafting a larger caudal portion of the embryo. Initially, the grafted tissue broke up into loose masses of embryonic mesenchyme and this was later re-organized into more compact tissues and into cysts that were lined with various types of epithelia. After 14 days in the ectopic site, grafted tissues coming from embryos of the primitive-streak, the early-somite and the forelimb-bud stages differentiated into structures that has presumably originated from the three embryonic germ layers. Many of these structures were related to the caudal region of the adult body, such as the mid- and hindgut segments and urogenital derivatives. The histogenetic capacity for endodermal tissues and urogenital organs was lost when the grafted tissue consisted entirely of the tail bud of the hindlimb-bud-stage embryos. The behaviour of the caudal tissues suggested that (1) the primordia for the various parts of embryonic body were derived from a small progenitor population in the primitive streak and the tail bud, and (2) the histogenetic capacity of this population changed during development.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1130
Author(s):  
Anna Połeć ◽  
Alexander D. Rowe ◽  
Pernille Blicher ◽  
Rajikala Suganthan ◽  
Magnar Bjørås ◽  
...  

The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos.


Reproduction ◽  
2008 ◽  
Vol 135 (5) ◽  
pp. 657-669 ◽  
Author(s):  
Basudha Basu ◽  
Radha Desai ◽  
J Balaji ◽  
Raghothama Chaerkady ◽  
V Sriram ◽  
...  

Serotonin is reported to be present in early embryos of many species and plays an important role in early patterning. Since it is a fluorophore, it can be directly visualized using fluorescence microscopy. Here, we use three-photon microscopy to image serotonin in live pre-implantation mouse embryos. We find that it is present as puncta averaging 1.3 square microns and in concentrations as high as 442 mM. The observed serotonin puncta were found to co-localize with mitochondria. Live embryos pre-incubated with serotonin showed a higher mitochondrial potential, indicating that it can modulate mitochondrial potential. Pre-implantation mouse embryos were also examined at various developmental stages for the presence of transcripts of the peripheral and neuronal forms of tryptophan hydroxylase (Tph1andTph2respectively) and the classical serotonin transporter (Slc6a4). Transcripts ofTph2were seen in oocytes and in two-cell stages, whereas transcripts ofTph1were not detected at any stage. Transcripts of the transporter,Slc6a4, were present in all pre-implantation stages investigated. These results suggest that serotonin in embryos can arise from a combination of synthesis and uptake from the surrounding milieu.


Sign in / Sign up

Export Citation Format

Share Document