scholarly journals The expression of slow myosin during mammalian somitogenesis and limb bud differentiation.

1988 ◽  
Vol 107 (6) ◽  
pp. 2191-2197 ◽  
Author(s):  
E Vivarelli ◽  
W E Brown ◽  
R G Whalen ◽  
G Cossu

The developmental pattern of slow myosin expression has been studied in mouse embryos from the somitic stage to the period of secondary fiber formation and in myogenic cells, cultured from the same developmental stages. The results obtained, using a combination of different polyclonal and monoclonal antibodies, indicate that slow myosin is coexpressed in virtually all the cells that express embryonic (fast) myosin in somites and limb buds in vivo as well as in culture. On the contrary fetal or late myoblasts (from 15-d-old embryos) express in culture only embryonic (fast) myosin. At this stage, muscle cells in vivo, as already shown (Crow, M.T., and F.A. Stockdale. 1986. Dev. Biol. 113:238-254; Dhoot, G.K. 1986. Muscle & Nerve. 9:155-164; Draeger, A., A.G. Weeds, and R.B. Fitzsimons. 1987. J. Neurol. Sci. 81:19-43; Miller, J.B., and F.A. Stockdale. 1986. J. Cell Biol. 103:2197-2208), consist of primary myotubes, which express both myosins, and secondary myotubes, which express preferentially embryonic (fast) myosin. Under no circumstance neonatal or adult fast myosins were detected. Western blot analysis confirmed the immunocytochemical data. These results suggest that embryonic myoblasts in mammals are all committed to the mixed embryonic-(fast) slow lineage and, accordingly, all primary fibers express both myosins, whereas fetal myoblasts mostly belong to the embryonic (fast) lineage and likely generate fibers containing only embryonic (fast) myosin. The relationship with current models of avian myogenesis are discussed.

1986 ◽  
Vol 6 (4) ◽  
pp. 1187-1203 ◽  
Author(s):  
K B Palter ◽  
M Watanabe ◽  
L Stinson ◽  
A P Mahowald ◽  
E A Craig

Monoclonal antibodies have been used to identify three proteins in Drosophila melanogaster that share antigenic determinants with the major heat shock proteins hsp70 and hsp68. While two of the proteins are major proteins at all developmental stages, one heat shock cognate protein, hsc70, is especially enriched in embryos. hsc70 is shown to be the product of a previously identified gene, Hsc4. We have examined the levels of hsp70-related proteins in adult flies and larvae during heat shock and recovery. At maximal induction in vivo, hsp70 and hsp68 never reach the basal levels of the major heat shock cognate proteins. Monoclonal antibodies to hsc70 have been used to localize it to a meshwork of cytoplasmic fibers that are heavily concentrated around the nucleus.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 925-933 ◽  
Author(s):  
M.G. Cusella-De Angelis ◽  
S. Molinari ◽  
A. Le Donne ◽  
M. Coletta ◽  
E. Vivarelli ◽  
...  

Embryonic and fetal skeletal myoblasts were grown in culture in the presence of TGF beta. Under the conditions employed, TGF beta inhibited differentiation of fetal but not of embryonic myoblasts. To investigate the possible relevance of these data to skeletal muscle histogenesis in vivo, we studied the proliferation/differentiation state of mesodermal cells in the proximal region of the limb bud at the time of primary fiber formation. BrdU labeling and immunostaining for myosin heavy chains revealed that very few mesodermal cells enter the S phase of the cycle when differentiated primary fibers first appear. However, a few hours later, many cells in S phase surround newly formed muscle fibers, suggesting that the latter may be a source of mitogens for undifferentiated myoblasts. Co-culture experiments supported this hypothesis, showing that medium conditioned by fiber-containing explants can stimulate myoblast proliferation. Taken together these data suggested a possible mechanism for the regulation of muscle fiber formation. The model assumes that fibers form in the proximal region of the limb bud, where TGF beta is known to be present, and BrdU labeling experiments did not reveal cells in S phase. It is conceivable that non-dividing embryonic myoblasts (which do not respond to TGF beta) can undergo differentiation, while fetal myoblasts are inhibited by TGF beta. Once formed, primary fibers may stimulate a new wave of proliferation in fetal myoblasts, in order to expand the pool of cells needed to form secondary fibers.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 6 (4) ◽  
pp. 1187-1203
Author(s):  
K B Palter ◽  
M Watanabe ◽  
L Stinson ◽  
A P Mahowald ◽  
E A Craig

Monoclonal antibodies have been used to identify three proteins in Drosophila melanogaster that share antigenic determinants with the major heat shock proteins hsp70 and hsp68. While two of the proteins are major proteins at all developmental stages, one heat shock cognate protein, hsc70, is especially enriched in embryos. hsc70 is shown to be the product of a previously identified gene, Hsc4. We have examined the levels of hsp70-related proteins in adult flies and larvae during heat shock and recovery. At maximal induction in vivo, hsp70 and hsp68 never reach the basal levels of the major heat shock cognate proteins. Monoclonal antibodies to hsc70 have been used to localize it to a meshwork of cytoplasmic fibers that are heavily concentrated around the nucleus.


2008 ◽  
Vol 56 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Chang-Liang Yan ◽  
Qi-En Yang ◽  
Guang-Bin Zhou ◽  
Yun-Peng Hou ◽  
Xue-Ming Zhao ◽  
...  

The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3–100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8–89.5%) and hatched blastocyst rates (61.1–69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3–30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.


Author(s):  
Jessica Cristina Marín-Llera ◽  
Carlos Ignacio Lorda-Diez ◽  
Juan Mario Hurle ◽  
Jesús Chimal-Monroy

At early developmental stages, limb bud mesodermal undifferentiated cells are morphologically indistinguishable. Although the identification of several mesodermal skeletal progenitor cell populations has been recognized, in advanced stages of limb development here we identified and characterized the differentiation hierarchy of two new early limb bud subpopulations of skeletal progenitors defined by the differential expression of the SCA-1 marker. Based on tissue localization of the mesenchymal stromal cell-associated markers (MSC-am) CD29, Sca-1, CD44, CD105, CD90, and CD73, we identified, by multiparametric analysis, the presence of cell subpopulations in the limb bud capable of responding to inductive signals differentially, namely, sSca+ and sSca– cells. In concordance with its gene expression profile, cell cultures of the sSca+ subpopulation showed higher osteogenic but lower chondrogenic capacity than those of sSca–. Interestingly, under high-density conditions, fibroblast-like cells in the sSca+ subpopulation were abundant. Gain-of-function employing micromass cultures and the recombinant limb assay showed that SCA-1 expression promoted tenogenic differentiation, whereas chondrogenesis is delayed. This model represents a system to determine cell differentiation and morphogenesis of different cell subpopulations in similar conditions like in vivo. Our results suggest that the limb bud is composed of a heterogeneous population of progenitors that respond differently to local differentiation inductive signals in the early stages of development, where SCA-1 expression may play a permissive role during cell fate.


1993 ◽  
Vol 121 (4) ◽  
pp. 795-810 ◽  
Author(s):  
M Cho ◽  
S G Webster ◽  
H M Blau

Vertebrate muscles are composed of an array of diverse fast and slow fiber types with different contractile properties. Differences among fibers in fast and slow MyHC expression could be due to extrinsic factors that act on the differentiated myofibers. Alternatively, the mononucleate myoblasts that fuse to form multinucleated muscle fibers could differ intrinsically due to lineage. To distinguish between these possibilities, we determined whether the changes in proportion of slow fibers were attributable to inherent differences in myoblasts. The proportion of fibers expressing slow myosin heavy chain (MyHC) was found to change markedly with time during embryonic and fetal human limb development. During the first trimester, a maximum of 75% of fibers expressed slow MyHC. Thereafter, new fibers formed which did not express this MyHC, so that the proportion of fibers expressing slow MyHC dropped to approximately 3% of the total by midgestation. Several weeks later, a subset of the new fibers began to express slow MyHC and from week 30 of gestation through adulthood, approximately 50% of fibers were slow. However, each myoblast clone (n = 2,119) derived from muscle tissues at six stages of human development (weeks 7, 9, 16, and 22 of gestation, 2 mo after birth and adult) expressed slow MyHC upon differentiation. We conclude from these results that the control of slow MyHC expression in vivo during muscle fiber formation in embryonic development is largely extrinsic to the myoblast. By contrast, human myoblast clones from the same samples differed in their expression of embryonic and neonatal MyHCs, in agreement with studies in other species, and this difference was shown to be stably heritable. Even after 25 population doublings in tissue culture, embryonic stage myoblasts did not give rise to myoblasts capable of expressing MyHCs typical of neonatal stages, indicating that stage-specific differences are not under the control of a division dependent mechanism, or intrinsic "clock." Taken together, these results suggest that, unlike embryonic and neonatal MyHCs, the expression of slow MyHC in vivo at different developmental stages during gestation is not the result of commitment to a distinct myoblast lineage, but is largely determined by the environment.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 65-69 ◽  
Author(s):  
G. Cossu ◽  
G. Ranaldi ◽  
M.I. Senni ◽  
M. Molinaro ◽  
E. Vivarelli

Mesenchymal cells were isolated from somites and limbs of mouse embryos at different developmental stages. When grown in tissue culture, some of the cells underwent muscle differentiation as indicated by synthesis of sarcomeric myosin, acetylcholine receptor and, in the case of limb cells, fusion into multinucleated myotubes. When the tumour promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) was added to these cultures, it caused differential effects, depending upon the age of the embryo from which cells were isolated. In cultures of somites or limb bud from embryos up to 12 days post coitum, TPA did not interfere with the appearance of differentiated muscle cells. When TPA was added to cultures from older embryos, it inhibited muscle differentiation with an efficiency which increased with the age of the embryo, reaching about 90% inhibition at 15 days. After this period, a new population of myogenic cells appeared in the limb, which were able to differentiate in the presence of TPA and represented the great majority of myoblasts after day 18 of embryonic development. The simplest interpretation of these data can be based on the existence of three major classes of myogenic cell precursors, which appear sequentially during muscle histogenesis: ‘early’ myoblasts, which appear resistant to tumour promoters; ‘late’ myoblasts, whose differentiation is inhibited by tumour promoters and ‘satellite’ cells which, like early myoblasts, show no sensitivity to TPA.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2047 ◽  
Author(s):  
Peter Hollowell ◽  
Zongyi Li ◽  
Xuzhi Hu ◽  
Sean Ruane ◽  
Cavan Kalonia ◽  
...  

Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device. MAbs, like any globular protein, are amphiphilic and readily adsorb to interfaces, potentially causing structural deformation and even unfolding. Desorption of structurally perturbed mAbs is often hypothesized to promote aggregation, potentially leading to the formation of subvisible particles and visible precipitates. Since mAbs are exposed to numerous interfaces during biomanufacturing, storage and administration, many studies have examined mAb adsorption to different interfaces under various mitigation strategies. This review examines recent published literature focusing on adsorption of bioengineered mAbs under well-defined solution and surface conditions. The focus of this review is on understanding adsorption features driven by distinct antibody domains and on recent advances in establishing model interfaces suitable for high resolution surface measurements. Our summary highlights the need to further understand the relationship between mAb interfacial adsorption and desorption, solution aggregation, and product instability during fill-finish, transport, storage and administration.


2018 ◽  
Vol 66 (9) ◽  
pp. 663-671 ◽  
Author(s):  
Guanghui Shi ◽  
Yanyan Zhou ◽  
Jing Guo ◽  
Zhongrui Yang ◽  
Yang Lu ◽  
...  

The clinical and pathological features of fluorosis are similar to amelogenesis imperfecta (AI) caused by FAM83H mutations, suggesting that excess fluoride could have effects on the expression of Fam83h. Our previous study found that Fam83h was downregulated by fluorosis induction in ameloblasts; the purpose of this study was to underline the importance of understanding the relationship between fluoride administration and Fam83h expression in vivo. A total of 80 healthy female adult Kunming mice were randomly divided into control group or F group that induced the clinical features of fluorosis. Immunohistochemical staining on sections of the embryo mandible regions was performed at different developmental stages. Mouse primary ameloblast-like cells of the two groups at E13.5, E15.5, and E18.5 were cultured and examined for the expression of Fam83h. The expression of Fam83h in the F group was significantly lower than that in the control group; however, Fam83h was observed clearly in the whole enamel organ in the control group. Our findings shed new light on the potential effects of Fam83h in fluorosis using a mouse model and revealed that high fluoride decreased the expression of Fam83h. This may be one of the reasons for the occurrence of fluorosis.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Sign in / Sign up

Export Citation Format

Share Document