epidermal differentiation complex
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Lachner ◽  
Florian Ehrlich ◽  
Matthias Wielscher ◽  
Matthias Farlik ◽  
Marcela Hermann ◽  
...  

AbstractThe growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Yosuke Ishitsuka ◽  
Dennis R. Roop

A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.


2021 ◽  
Vol 12 ◽  
Author(s):  
Khalid Muhammad ◽  
Delicia Xavier ◽  
Stefan Klein-Hessling ◽  
Muhammad Azeem ◽  
Tabea Rauschenberger ◽  
...  

The skin protects the human body against dehydration and harmful challenges. Keratinocytes (KCs) are the most abundant epidermal cells, and it is anticipated that KC-mediated transport of Na+ ions creates a physiological barrier of high osmolality against the external environment. Here, we studied the role of NFAT5, a transcription factor whose activity is controlled by osmotic stress in KCs. Cultured KCs from adult mice were found to secrete more than 300 proteins, and upon NFAT5 ablation, the secretion of several matrix proteinases, including metalloproteinase-3 (Mmp3) and kallikrein-related peptidase 7 (Klk7), was markedly enhanced. An increase in Mmp3 and Klk7 RNA levels was also detected in transcriptomes of Nfat5-/- KCs, along with increases of numerous members of the ‘Epidermal Differentiation Complex’ (EDC), such as small proline-rich (Sprr) and S100 proteins. NFAT5 and Mmp3 as well as NFAT5 and Klk7 are co-expressed in the basal KCs of fetal and adult epidermis but not in basal KCs of newborn (NB) mice. The poor NFAT5 expression in NB KCs is correlated with a strong increase in Mmp3 and Klk7 expression in KCs of NB mice. These data suggests that, along with the fragile epidermis of adult Nfat5-/- mice, NFAT5 keeps in check the expression of matrix proteases in epidermis. The NFAT5-mediated control of matrix proteases in epidermis contributes to the manifold changes in skin development in embryos before and during birth, and to the integrity of epidermis in adults.


2021 ◽  
Vol 28 (5) ◽  
pp. 267-274
Author(s):  
Lorenzo Alibardi

During epidermal differentiation in the scales of lizards and snakes, from the basal layer beta- and later alpha-keratinocytes are generated to form beta-and alpha-corneous layers. In the lizard Anolis carolinensis, minor proteins derived from the EDC (Epidermal Differentiation Complex) are added to the main constituent proteins, IFKs (Intermediate Filament Keratins) and CBPs (Corneous Beta Proteins, formerly indicated as beta keratins). One of these proteins that previous studies showed to be exclusively expressed in the skin, EDWM (EDC protein containing high GSRC amino acids) is rich in cysteine and arginine, amino acids that form numerous –S–S– and electro-static chemical bonds in the corneous material. Light and electron microscopy immunolbeling for EDWM show a diffuse localization in differentiating beta-cells and in some alpha-cells, in particular those of the clear-layer, involved in epidermal shedding. The study suggests that EDWM may function as a matrix protein that binds to IFKs and CBPs, contributing to the formation of the specific corneous material present in beta- and alpha-corneous layers. In particular, its higher immunolocalization in the maturing clear layer indicates that this protein is important for its differentiation and epidermal shedding in A. carolinensis and likely also in other lepidosaurian reptiles.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1291
Author(s):  
Gee-Way Lin ◽  
Yung-Chih Lai ◽  
Ya-Chen Liang ◽  
Randall B. Widelitz ◽  
Ping Wu ◽  
...  

The epidermal differentiation complex (EDC) encodes a group of unique proteins expressed in late epidermal differentiation. The EDC gave integuments new physicochemical properties and is critical in evolution. Recently, we showed β-keratins, members of the EDC, undergo gene cluster switching with overexpression of SATB2 (Special AT-rich binding protein-2), considered a chromatin regulator. We wondered whether this unique regulatory mechanism is specific to β-keratins or may be derived from and common to EDC members. Here we explore (1) the systematic expression patterns of non-β-keratin EDC genes and their preferential expression in different skin appendages during development, (2) whether the expression of non-β-keratin EDC sub-clusters are also regulated in clusters by SATB2. We analyzed bulk RNA-seq and ChIP-seq data and also evaluated the disrupted expression patterns caused by overexpressing SATB2. The results show that the expression of whole EDDA and EDQM sub-clusters are possibly mediated by enhancers in E14-feathers. Overexpressing SATB2 down-regulates the enriched EDCRP sub-cluster in feathers and the EDCH sub-cluster in beaks. These results reveal the potential of complex epigenetic regulation activities within the avian EDC, implying transcriptional regulation of EDC members acting at the gene and/or gene cluster level in a temporal and skin regional-specific fashion, which may contribute to the evolution of diverse avian integuments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karin Brigit Holthaus ◽  
Julia Lachner ◽  
Bettina Ebner ◽  
Erwin Tschachler ◽  
Leopold Eckhart

AbstractMajor protein components of the mammalian skin barrier are encoded by genes clustered in the Epidermal Differentiation Complex (EDC). The skin of cetaceans, i.e. whales, porpoises and dolphins, differs histologically from that of terrestrial mammals. However, the genetic regulation of their epidermal barrier is only incompletely known. Here, we investigated the EDC of cetaceans by comparative genomics. We found that important epidermal cornification proteins, such as loricrin and involucrin are conserved and subtypes of small proline-rich proteins (SPRRs) are even expanded in numbers in cetaceans. By contrast, keratinocyte proline rich protein (KPRP), skin-specific protein 32 (XP32) and late-cornified envelope (LCE) genes with the notable exception of LCE7A have been lost in cetaceans. Genes encoding proline rich 9 (PRR9) and late cornified envelope like proline rich 1 (LELP1) have degenerated in subgroups of cetaceans. These data suggest that the evolution of an aquatic lifestyle was accompanied by amplification of SPRR genes and loss of specific other epidermal differentiation genes in the phylogenetic lineage leading to cetaceans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincent T. Janmaat ◽  
Kateryna Nesteruk ◽  
Manon C. W. Spaander ◽  
Auke P. Verhaar ◽  
Bingting Yu ◽  
...  

AbstractBarrett’s esophagus in gastrointestinal reflux patients constitutes a columnar epithelium with distal characteristics, prone to progress to esophageal adenocarcinoma. HOX genes are known mediators of position-dependent morphology. Here we show HOX collinearity in the adult gut while Barrett’s esophagus shows high HOXA13 expression in stem cells and their progeny. HOXA13 overexpression appears sufficient to explain both the phenotype (through downregulation of the epidermal differentiation complex) and the oncogenic potential of Barrett’s esophagus. Intriguingly, employing a mouse model that contains a reporter coupled to the HOXA13 promotor we identify single HOXA13-positive cells distally from the physiological esophagus, which is mirrored in human physiology, but increased in Barrett’s esophagus. Additionally, we observe that HOXA13 expression confers a competitive advantage to cells. We thus propose that Barrett’s esophagus and associated esophageal adenocarcinoma is the consequence of expansion of this gastro-esophageal HOXA13-expressing compartment following epithelial injury.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2829
Author(s):  
Xiangmudong Kong ◽  
Dan Wang ◽  
Wenqiang Sun ◽  
Mingyi Chen ◽  
Jinhui Chen ◽  
...  

Small proline-rich protein 2A and 2D (SPRR2A and SPRR2D) provide barrier function in terminally differentiated stratified squamous epithelia through the epidermal differentiation complex. However, little is known how SPRR2A/2D expression is controlled and their role in chronic inflammation. Here, we showed that that SPRR2A/2D expression is controlled by a regulatory loop formed by RNA-binding protein RBM38 and tumor suppressor p73. Specifically, we found that SPRR2A/2D expression was induced by ectopic expression of RBM38 or p73 but suppressed by knockout of Rbm38 or p73. We also found that RBM38-mediated expression of SPRR2A/2D was p73-dependent and that induction of SPRR2A/2D during keratinocyte differentiation was dependent on both p73 and Rbm38. Additionally, we found that SPRR2A/2D expression was closely associated with p73 expression in normal and cancerous tissues. To determine the biological function of the RBM38-p73 loop potentially via SPRR2A/2D, we generated a cohort of wild-type, Rbm38−/−, Trp73+/−, and Rbm38−/−;Trp73+/− mice. We found that Rbm38−/−;Trp73+/− mice had a much shorter lifespan than that for Rbm38−/−—and to a lesser extent for Trp73+/− mice—but were less prone to spontaneous tumors than Trp73+/− or Rbm38−/− mice. We also found that Rbm38−/−;Trp73+/− mice exhibited weak expression of SPRR2A/2D in multiple tissues and were susceptible to systemic chronic inflammation, suggesting that decreased SPRR2A/2D expression is likely responsible for chronic inflammation in Rbm38−/−;Trp73+/− mice, leading to a shortened lifespan. Together, our data reveal that SPRR2A/2D are novel targets of the RBM38-p73 loop and contribute to p73-dependent suppression of chronic inflammation.


2021 ◽  
Vol 10 (11) ◽  
pp. 2506
Author(s):  
Anna Dębińska

Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 767
Author(s):  
Anthony Davis ◽  
Matthew J. Greenwold

The transition of amniotes to a fully terrestrial lifestyle involved the adaptation of major molecular innovations to the epidermis, often in the form of epidermal appendages such as hair, scales and feathers. Feathers are diverse epidermal structures of birds, and their evolution has played a key role in the expansion of avian species to a wide range of lifestyles and habitats. As with other epidermal appendages, feather development is a complex process which involves many different genetic and protein elements. In mammals, many of the genetic elements involved in epidermal development are located at a specific genetic locus known as the epidermal differentiation complex (EDC). Studies have identified a homologous EDC locus in birds, which contains several genes expressed throughout epidermal and feather development. A family of avian EDC genes rich in aromatic amino acids that also contain MTF amino acid motifs (EDAAs/EDMTFs), that includes the previously reported histidine-rich or fast-protein (HRP/fp), an important marker in feather development, has expanded significantly in birds. Here, we characterize the EDAA gene family in birds and investigate the evolutionary history and possible functions of EDAA genes using phylogenetic and sequence analyses. We provide evidence that the EDAA gene family originated in an early archosaur ancestor, and has since expanded in birds, crocodiles and turtles, respectively. Furthermore, this study shows that the respective amino acid compositions of avian EDAAs are characteristic of structural functions associated with EDC genes and feather development. Finally, these results support the hypothesis that the genes of the EDC have evolved through tandem duplication and diversification, which has contributed to the evolution of the intricate avian epidermis and epidermal appendages.


Sign in / Sign up

Export Citation Format

Share Document