Tissue interactions and cell differentiation: neurone–sensory cell interaction during otic development

Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 185-193 ◽  
Author(s):  
Thomas R. Van De Water

Statoacoustic ganglion neurones (SAG) are produced by the same group of cells (otic placode) that produce all of the receptor cells that populate the sensory areas of the inner ear. The observation that ingrowth of SAG neurites to presumptive sensory areas of the inner ear preceded cytodifferentiation of those receptor cells suggested a causal relationship. Results from in vivo, in ovo and in vitro studies do not support a causal relationship. These studies support the hypothesis that the programme for labyrinthine sensory cell differentiation is intrinsic and does not require the extrinsic stimulus of neuronal interaction to trigger its expression. In contrast, developing statoacoustic ganglion neurones appear to require a trophic influence that is supplied by either their peripheral or central target tissues for their survival and maturation in vitro. A mechanism for the ingrowth of SAG dendrites to their appropriate target sites within the inner ear proposes that attractant fields produced by areas of differentiating sensory cells act to guide the nerve growth cones of ingrowing SAG neurites to the appropriate tissues. Preliminary results from a hcterochronic series of SAG implants to common age otocysts suggest that these SAG neurones are capable of responding to the attractant fields which are produced by presumptive labyrinthine sensory epithelium over an extended period of otic development. Both in ovo and in vitro studies suggest that spatiotemporal patterns of extracellular matrix molecules may be important components of the attractant fields which are produced by the sensory areas of the developing inner ear and may ultimately result in the specificity of their neuronal connections.


2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.



PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0164637 ◽  
Author(s):  
Barbara Strojny ◽  
Marta Grodzik ◽  
Ewa Sawosz ◽  
Anna Winnicka ◽  
Natalia Kurantowicz ◽  
...  


1976 ◽  
Vol 85 (6_suppl) ◽  
pp. 2-32 ◽  
Author(s):  
Thomas R. Van De Water

An experiment was designed to answer the question as to whether or not the neural elements of the statoacoustic ganglion complex have a trophic effect upon the histodifferentiation of the sensory structures of the embryonic mouse inner ear anlage as it develops in vitro. The embryonic inner ear anlage with associated otic mesenchyme and statoacoustic ganglion complex was excised from 11, 12, and 13-day CBA/C57 mouse embryos. The inner ear explants of each gestational age group were further divided into two groups: the first group “A” (with) statoacoustic ganglion was explanted to the organ culture system without further surgical intervention; the second group “B” (without) statoacoustic ganglion underwent further surgical manipulation during which their statoacoustic ganglion complexes were dissected away prior to explantation to in vitro. The explanted embryonic inner ears were allowed to develop in organ culture until the equivalent of gestation day 21 in vivo was reached for each group; then all cultures were fixed and histologically processed and stained by a nerve fiber stain, in combination with a stain for glucoprotein membranes. Each specimen was code labeled and scored for histodifferentiation of sensory structures. Light microscopic observations confirmed that in group “A” cultures, statoacoustic ganglion neurons and their nerve fibers were present in association with the developed sensory structures; neither ganglion cell neurons nor their nerve fibers were found to be present in the sensory structures that developed in the group “B” organ culture specimens. Quantification revealed no consistent trend of greater occurrence of any sensory structure in the groups of explants analyzed. The presence of such a trend would have signified the probable existence of a trophic effect of the statoacoustic ganglion neural elements upon development of inner ear sensory structures in the group “A” explants of the 11, 12, and 13-day embryo inner ear organ culture specimens when compared to the aganglionic group “B” cultures. Microscopic comparison of the sensory structures and their sensory hair cells that developed in the organ cultures revealed no differences in the quality of the histodifferentiation of either group “A” or group “B” explants. A base to apex pattern of histodifferentiation of the organ of Corti sensory structures, which has been described to occur in vivo, was noted to occur in the in vitro developed cochlear ducts of all of the explanted inner ears without respect to whether neural elements were present (“A”) or absent (“B”) during development. It was concluded from the quantification of histodifferentiation data and the above observation on the pattern of differentiation of Corti's organ that no trophic effect of neural elements of the statoacoustic ganglion complex influencing the histodifferentiation of sensory structures of 11, 12, and 13-gestation day mouse embryo inner ear explants as they differentiate in vitro could be demonstrated.



2005 ◽  
Vol 114 (11) ◽  
pp. 853-858 ◽  
Author(s):  
Brian C. Bane ◽  
Jana M. Van Rybroek ◽  
Sandra J. Kolker ◽  
Daniel L. Weeks ◽  
Jose M. Manaligod

Objectives: We sought to determine the developmental anatomy and EYA1 protein distribution in the inner ear of Xenopus laevis. Methods: Xenopus laevis embryos were stained with monoclonal antibodies and imaged with confocal microscopy. Results: At stage 27, the otocyst fully forms, with strong tubulin staining of early sensory cells at its ventromedial aspect. Neuronal ingrowth follows at stage 33/34. At stage 50, the semicircular canals are complete. EYA1 localizes to the anterior aspect of the otocyst from stages 37 to 44. By stage 50, EYA1 distribution is localized primarily to the sensory maculae and the endolymphatic duct of the developing inner ear. Conclusions: Whole mount confocal imaging of the developing Xenopus inner ear delineates the exact timing of otic development, sensory cell differentiation, and innervation. EYA1 protein expression has a distinct distribution pattern at the anterior aspect of the developing otocyst in stages 41 and 44. Later stages have a more localized pattern, in which EYA1 is detected only in the sensory epithelium and endolymphatic duct. This specific pattern of expression indicates a possible role in the determination of the anterior-posterior orientation of the inner ear, as well as a later role in sensory cell differentiation.





2009 ◽  
Vol 25 (2) ◽  
pp. 211-221 ◽  
Author(s):  
M Silvina Molinuevo ◽  
Leon Schurman ◽  
Antonio D McCarthy ◽  
Ana M Cortizo ◽  
María J Tolosa ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document