A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse

Development ◽  
1988 ◽  
Vol 104 (2) ◽  
pp. 305-316 ◽  
Author(s):  
D. Davidson ◽  
E. Graham ◽  
C. Sime ◽  
R. Hill

The mouse genes En-1 and En-2 display sequence similarity, in and around the homeobox region, to the engrailed family in Drosophila. This paper describes their pattern of expression in the 12.5-day mouse embryo as determined by in situ hybridization. En-2 is expressed in a subset of cells expressing En-1. Both genes are expressed in the developing midbrain and its junction with the hindbrain. In addition, En-1 is expressed in the floor of the hindbrain, a restricted ventrolateral segment of the neural tube throughout the trunk and anterior part of the tail, the dermatome of tail somites, the centrum and costal processes in developing vertebrae, a restricted region of facial mesenchyme and the limb-bud ectoderm. Supplementary studies of 9.5-day and 10.5-day embryos showed that the same pattern of expression pertained in the neural tube, but that expression in the somites is at first confined to the dermatome and later found at a low level in restricted sclerotomal regions. Both genes are expressed in restricted domains which do not cross tissue-type boundaries. In several instances, however, boundaries of expression lie within morphologically undifferentiated tissue. These results suggest that En-1 and En-2 may be involved in the establishment or maintenance of the spatial integrity of specific domains within developing tissues.

Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2335-2344 ◽  
Author(s):  
J.C. Corbo ◽  
A. Erives ◽  
A. Di Gregorio ◽  
A. Chang ◽  
M. Levine

The notochord and dorsal ectoderm induce dorsoventral compartmentalization of the vertebrate neural tube through the differential regulation of genes such as HNF-3beta, Pax3, Pax6 and snail. Here we analyze the expression of HNF-3beta and snail homologues in the ascidian, Ciona intestinalis, a member of the subphylum Urochordata, the earliest branch in the chordate phylum. A combination of in situ hybridization and promoter fusion analyses was used to demonstrate that the Ciona HNF-3beta homologue is expressed in the ventralmost ependymal cells of the neural tube, while the Ciona snail homologue is expressed at the junction between the invaginating neuroepithelium and dorsal ectoderm, similar to the patterns seen in vertebrates. These findings provide evidence that dorsoventral compartmentalization of the chordate neural tube is not an innovation of the vertebrates. We propose that precursors of the floor plate and neural crest were present in a common ancestor of both vertebrates and ascidians.


1998 ◽  
Vol 138 (1-2) ◽  
pp. 151-161 ◽  
Author(s):  
Marjolein van Kleffens ◽  
Cora Groffen ◽  
Roberto R. Rosato ◽  
Stefan M. van den Eijnde ◽  
Johan W. van Neck ◽  
...  

1988 ◽  
Vol 8 (4) ◽  
pp. 277-294 ◽  
Author(s):  
Hyun-Duck Nah ◽  
Barbara J. Rodgers ◽  
William M. Kulyk ◽  
Barbara E. Kream ◽  
Robert A. Kosher ◽  
...  

Endocrinology ◽  
2001 ◽  
Vol 142 (7) ◽  
pp. 3223-3230 ◽  
Author(s):  
Masayo Yamagata ◽  
Akihito Kimoto ◽  
Toshimi Michigami ◽  
Masahiro Nakayama ◽  
Keiichi Ozono

Abstract In this study we examined the expression of 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) and 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase) by RT-PCR and whole mount in situ hybridization using organ culture of kidney taken from mouse embryo. First, the kidneys of mouse embryo at 11.5–17.5 days gestation were cultured in the presence or absence of forskolin and 1,25-dihydroxyvitamin D3[ 1α,25-(OH)2D3]. Forskolin and 1α,25-(OH)2D3 induced the expression of 1α-hydroxylase and 24-hydroxylase, respectively, in a dose- and time-dependent manner. In the absence of stimulants, the expression of 1α-hydroxylase and 24-hydroxylase was detected from days 13.5–17.5 gestation. The expression of vitamin D receptor and megalin was detected from days 13.5 and 11.5, respectively. Next, signals for the expression of either 1α-hydroxylase or 24-hydroxylase were detected by whole mount in situ hybridization in kidney explants taken from embryo at 15.5 days gestation after the appropriate stimulation. However, the localization of signals differed between the two enzymes; 1α-hydroxylase messenger RNA was expressed in the inner area of the kidney explants, whereas 24-hydroxylase messenger RNA was expressed in the surface area. The expression of both hydroxylases was restricted to the epithelium of developing renal tubules. The pattern of megalin expression was similar to that of 1α-hydroxylase expression. To confirm the difference in distribution of 1α-hydroxylase and 24-hydroxylase transcripts, the explants were hybridized with probes for both 1α-hydroxylase and 24-hydroxylase using double labeling techniques after simultaneous stimulation with forskolin and 1α,25-(OH)2D3, resulting in the detection at different locations of positive signals for the two enzymes. These results suggest that the expression of 1α-hydroxylase is induced in a distinct epithelium of renal tubules from that of 24-hydroxylase even at the early stage of kidney development before glomerulogenesis.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 999-1009 ◽  
Author(s):  
L. Bally-Cuif ◽  
R.M. Alvarado-Mallart ◽  
D.K. Darnell ◽  
M. Wassef

Grafting a met-mesencephalic portion of neural tube from a 9.5-day mouse embryo into the prosencephalon of a 2-day chick embryo results in the induction of chick En-2 (ChickEn) expression in cells in contact with the graft (Martinez et al., 1991). In this paper we investigate the possibility of Wnt-1 being one of the factors involved in En-2 induction. Since Wnt-1 and En-2 expression patterns have been described as diverging during development of the met-mesencephalic region, we first compared Wnt-1 and En-2 expression in this domain by in situ hybridization in mouse embryos after embryonic day 8.5. A ring of Wnt-1-expressing cells is detected encircling the neural tube in the met-mesencephalic region at least until day 12.5. This ring consistently overlapped with the En-2 expression domain, and corresponds to the position of this latter gene's maximal expression. We subsequently studied ChickEn ectopic induction in chick embryos grafted with various portions of met-mesencephalon. When the graft originated from the level of the Wnt-1-positive ring, ChickEn induction was observed in 71% of embryos, and in these cases correlated with Wnt-1 expression in the grafted tissue. In contrast, this percentage dropped significantly when the graft was taken from more rostral or caudal parts of the mesencephalic vesicle. Taken together, these results are compatible with a prolonged role of Wnt-1 in the specification and/or development of the met-mesencephalic region, and show that Wnt-1 could be directly or indirectly involved in the regulation of En-2 expression around the Wnt-1-positive ring during this time. We also provide data on the position of the Wnt-1-positive ring relative to anatomical boundaries in the neural tube, which suggest a more general role for the Wnt-1 protein as a positional signal involved in organizing the met-mesencephalic domain.


2007 ◽  
Vol 2007 (11) ◽  
pp. pdb.prot4821 ◽  
Author(s):  
Andras Nagy ◽  
Marina Gertsenstein ◽  
Kristina Vintersten ◽  
Richard Behringer

Sign in / Sign up

Export Citation Format

Share Document