Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate

Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2335-2344 ◽  
Author(s):  
J.C. Corbo ◽  
A. Erives ◽  
A. Di Gregorio ◽  
A. Chang ◽  
M. Levine

The notochord and dorsal ectoderm induce dorsoventral compartmentalization of the vertebrate neural tube through the differential regulation of genes such as HNF-3beta, Pax3, Pax6 and snail. Here we analyze the expression of HNF-3beta and snail homologues in the ascidian, Ciona intestinalis, a member of the subphylum Urochordata, the earliest branch in the chordate phylum. A combination of in situ hybridization and promoter fusion analyses was used to demonstrate that the Ciona HNF-3beta homologue is expressed in the ventralmost ependymal cells of the neural tube, while the Ciona snail homologue is expressed at the junction between the invaginating neuroepithelium and dorsal ectoderm, similar to the patterns seen in vertebrates. These findings provide evidence that dorsoventral compartmentalization of the chordate neural tube is not an innovation of the vertebrates. We propose that precursors of the floor plate and neural crest were present in a common ancestor of both vertebrates and ascidians.

Development ◽  
1988 ◽  
Vol 104 (2) ◽  
pp. 305-316 ◽  
Author(s):  
D. Davidson ◽  
E. Graham ◽  
C. Sime ◽  
R. Hill

The mouse genes En-1 and En-2 display sequence similarity, in and around the homeobox region, to the engrailed family in Drosophila. This paper describes their pattern of expression in the 12.5-day mouse embryo as determined by in situ hybridization. En-2 is expressed in a subset of cells expressing En-1. Both genes are expressed in the developing midbrain and its junction with the hindbrain. In addition, En-1 is expressed in the floor of the hindbrain, a restricted ventrolateral segment of the neural tube throughout the trunk and anterior part of the tail, the dermatome of tail somites, the centrum and costal processes in developing vertebrae, a restricted region of facial mesenchyme and the limb-bud ectoderm. Supplementary studies of 9.5-day and 10.5-day embryos showed that the same pattern of expression pertained in the neural tube, but that expression in the somites is at first confined to the dermatome and later found at a low level in restricted sclerotomal regions. Both genes are expressed in restricted domains which do not cross tissue-type boundaries. In several instances, however, boundaries of expression lie within morphologically undifferentiated tissue. These results suggest that En-1 and En-2 may be involved in the establishment or maintenance of the spatial integrity of specific domains within developing tissues.


Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 105-122 ◽  
Author(s):  
Marysia Placzek ◽  
Toshiya Yamada ◽  
Marc Tessier-Lavigne ◽  
Thomas Jessell ◽  
Jane Dodd

Distinct classes of neural cells differentiate at specific locations within the embryonic vertebrate nervous system. To define the cellular mechanisms that control the identity and pattern of neural cells we have used a combination of functional assays and antigenic markers to examine the differentiation of cells in the developing spinal cord and hindbrain in vivo and in vitro. Our results suggest that a critical step in the dorsoventral patterning of the embryonic CNS is the differentiation of a specialized group of midline neural cells, termed the floor plate, in response to local inductive signals from the underlying notochord. The floor plate and notochord appear to control the pattern of cell types that appear along the dorsoventral axis of the neural tube. The fate of neuroepithelial cells in the ventral neural tube may be defined by cell position with respect to the ventral midline and controlled by polarizing signals that originate from the floor plate and notochord.


Author(s):  
Martin E. Atkinson

The early development of the nervous system, the process of neurulation, has already been outlined in Chapter 8 and illustrated in Figure 8.4. To briefly recap, an area of dorsal ectoderm is induced by the underlying notochord to form the neural plate during the third week of development. The lateral edges of the neural plate rise to form the neural folds which eventually fold over and unite in the midline by the end of the fourth week to produce the neural tube. A distinct cell population on the crest of the neural folds, the neural crest, migrates from the forming neural tube to form various structures, including components of the peripheral nervous system. The closed neural tube consists of a large diameter anterior portion that will become the brain and a longer cylindrical posterior section, the future spinal cord. Initially, the neural plate is a single cell layer, but concentric layers of cells can be recognized by the time the neural tube has closed. An inner layer of ependymal cells surrounds the central spinal canal. Neuroblasts, the precursors of neurons, make up the bulk of the neural tube called the mantle layer; this will become the grey matter of the spinal cord. Neuroblasts do not extend processes until they have completed their differentiation. When the cells in a particular location are fully differentiated, the neuronal processes emerging from the neuroblasts form an outer marginal layer which ultimately becomes the white matter of the spinal cord. Figure 19.1B shows that the neural tube changes shape due to proliferation of cells in the mantle layer. This figure also indicates two midline structures in the roof and floor of the tube, known as the roof plate and floor plate. They are important in the determination of the types of neurons that develop from the mantle layer. The floor plate is induced by the expression of a protein product of a gene called sonic hedgehog (SHH) produced by the underlying notochord; the floor plate then expresses the same gene itself. Neuroblasts nearest to the floor plate receive a high dose of SHH protein and respond by differentiating into motor neurons; as seen in Figure 19.1B, these cells group together to form bilateral ventrolateral basal plates.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 999-1009 ◽  
Author(s):  
L. Bally-Cuif ◽  
R.M. Alvarado-Mallart ◽  
D.K. Darnell ◽  
M. Wassef

Grafting a met-mesencephalic portion of neural tube from a 9.5-day mouse embryo into the prosencephalon of a 2-day chick embryo results in the induction of chick En-2 (ChickEn) expression in cells in contact with the graft (Martinez et al., 1991). In this paper we investigate the possibility of Wnt-1 being one of the factors involved in En-2 induction. Since Wnt-1 and En-2 expression patterns have been described as diverging during development of the met-mesencephalic region, we first compared Wnt-1 and En-2 expression in this domain by in situ hybridization in mouse embryos after embryonic day 8.5. A ring of Wnt-1-expressing cells is detected encircling the neural tube in the met-mesencephalic region at least until day 12.5. This ring consistently overlapped with the En-2 expression domain, and corresponds to the position of this latter gene's maximal expression. We subsequently studied ChickEn ectopic induction in chick embryos grafted with various portions of met-mesencephalon. When the graft originated from the level of the Wnt-1-positive ring, ChickEn induction was observed in 71% of embryos, and in these cases correlated with Wnt-1 expression in the grafted tissue. In contrast, this percentage dropped significantly when the graft was taken from more rostral or caudal parts of the mesencephalic vesicle. Taken together, these results are compatible with a prolonged role of Wnt-1 in the specification and/or development of the met-mesencephalic region, and show that Wnt-1 could be directly or indirectly involved in the regulation of En-2 expression around the Wnt-1-positive ring during this time. We also provide data on the position of the Wnt-1-positive ring relative to anatomical boundaries in the neural tube, which suggest a more general role for the Wnt-1 protein as a positional signal involved in organizing the met-mesencephalic domain.


Author(s):  
Anna A. Torgasheva ◽  
Lyubov P. Malinovskaya ◽  
Kira S. Zadesenets ◽  
Tatyana V. Karamysheva ◽  
Elena A. Kizilova ◽  
...  

An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.


1992 ◽  
Vol 199 (2) ◽  
pp. 392-397 ◽  
Author(s):  
Viviane Pohl ◽  
Carine Maenhaut ◽  
Catherine Gérard ◽  
Gilbert Vassart ◽  
Jacques E. Dumont

Sign in / Sign up

Export Citation Format

Share Document