An analysis of culmination in Dictyostelium using prestalk and stalk-specific cell autonomous markers

Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 779-787 ◽  
Author(s):  
K.A. Jermyn ◽  
J.G. Williams

The ecmA (pDd63) and ecmB (pDd56) genes encode extracellular matrix proteins of the slime sheath and stalk tube of Dictyostelium discoideum. Using fusion genes containing the promoter of one or other gene coupled to an immunologically detectable reporter, we previously identified two classes of prestalk cells in the tip of the migrating slug; a central core of pstB cells, which express the ecmB gene, surrounded by pstA cells, which express the ecmA gene. PstB cells lie at the position where stalk tube formation is initiated at culmination and we show that they act as its founders. As culmination proceeds, pstA cells transform into pstB cells by activating the ecmB gene as they enter the stalk tube. The prespore region of the slug contains a population of cells, termed anterior-like cells (ALC), which have the characteristics of prestalk cells. We show that the ecmA and ecmB genes are expressed at a low level in ALC during slug migration and that their expression in these cells is greatly elevated during culmination. Previous observations have shown that ALC sort to surround the prespore cells during culmination (Sternfeld and David, 1982 Devl Biol. 93, 111–118) and we find just such a distribution for pstB cells. We believe that the ecmB protein plays a structural role in the stalk tube and its presence, as a cradle around the spore head, suggests that it may play a further function, perhaps in ensuring integrity of the spore mass during elevation. If this interpretation is correct, then a primary role of anterior-like cells may be to form these structures at culmination. We previously identified a third class of prestalk cells, pstO cells, which lie behind pstA cells in the slug anterior and which appeared to express neither the ecmA nor the ecmB gene. Using B-galactosidase fusion constructs, which give more sensitive detection of gene expression, we now find that these cells express the ecmA gene but at a much lower level than pstA cells. We also show that expression of the ecmA gene becomes uniformly high throughout the prestalk zone when slugs are allowed to migrate in the light. Overhead light favours culmination and it may be that increased expression of the ecmA gene in the pst ‘O’ region is a preparatory step in the process.

Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 92 ◽  
Author(s):  
Charles Malemud

An imbalance in gene expressional events skewing chondrocyte anabolic and catabolic pathways toward the latter causes an aberrant turnover and loss of extracellular matrix proteins in osteoarthritic (OA) articular cartilage. Thus, catabolism results in the elevated loss of extracellular matrix proteins. There is also evidence of an increase in the frequency of chondrocyte apoptosis that compromises the capacity of articular cartilage to undergo repair. Although much of the fundamental OA studies over the past 20 years identified and characterized many genes relevant to pro-inflammatory cytokines, apoptosis, and matrix metalloproteinases (MMPs)/a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS), more recent studies focused on epigenetic mechanisms and the associated role of microRNAs (miRs) in regulating gene expression in OA cartilage. Thus, several miRs were identified as regulators of chondrocyte signaling pathways, apoptosis, and proteinase gene expression. For example, the reduced expression of miR-146a was found to be coupled to reduced type II collagen (COL2) in OA cartilage, whereas MMP-13 levels were increased, suggesting an association between MMP-13 gene expression and COL2A1 gene expression. Results of these studies imply that microRNAs could become useful in the search for diagnostic biomarkers, as well as providing novel therapeutic targets for intervention in OA.


1996 ◽  
Vol 26 (12) ◽  
pp. 2944-2951 ◽  
Author(s):  
Karen E. Noble ◽  
Panayiotis Panayiotidis ◽  
Peter W. Collins ◽  
A. Victor Hoffbrand ◽  
Kwee L. Yong

2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2020 ◽  
Vol 287 (5) ◽  
pp. 493-513 ◽  
Author(s):  
S. Holm Nielsen ◽  
L. Jonasson ◽  
K. Kalogeropoulos ◽  
M. A. Karsdal ◽  
A. L. Reese‐Petersen ◽  
...  

1985 ◽  
Vol 5 (10) ◽  
pp. 2559-2566 ◽  
Author(s):  
W N Grant ◽  
D L Welker ◽  
K L Williams

Polymorphisms of a major developmentally regulated prespore-specific protein (PsA) in Dictyostelium discoideum slugs are described. These polymorphisms allowed discrimination between PsA (found on the cell surface and in the extracellular matrix) and a similar extracellular but nonpolymorphic protein, ShA. The two proteins were also distinguished by their differing reactivities with a range of monoclonal antibodies and by their sensitivity to release from the sheath with cellulase. The results are discussed in terms of the molecular and genetic relationships between the cell surface and the extracellular matrix during development.


2007 ◽  
Vol 2 ◽  
pp. BMI.S294 ◽  
Author(s):  
Andrea Brunner ◽  
Alexandar Tzankov

The extracellular matrix (ECM) plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC) the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fibronectin (FN), tenascin (Tn-C) and thrombospondin 1 (TSP1) in UC. In addition the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document