beta-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma

Development ◽  
1992 ◽  
Vol 115 (2) ◽  
pp. 383-393
Author(s):  
R.A. Hahn ◽  
D.E. Birk

Corneal transparency is dependent upon the development of an organized extracellular matrix containing small diameter collagen fibrils with regular spacing, organized as orthogonal lamellae. Proteoglycan-collagen interactions have been implicated in the regulation of collagen fibrillogenesis and matrix assembly. To determine the role of dermatan sulfate proteoglycan in the development and organization of the secondary corneal stroma, its synthesis was disrupted using beta-D xyloside. The secondary corneal stroma contains two different proteoglycans, dermatan sulfate and keratan sulfate proteoglycan. beta-D xyloside interferes with xylose-mediated O-linked proteoglycan synthesis, and thus disrupts dermatan sulfate proteoglycan synthesis. Corneal keratan sulfate proteoglycan, a mannose-mediated N-linked proteoglycan, should not be altered. Biochemical analysis of corneas treated both in vitro and in ovo revealed a reduced synthesis of normally glycosylated dermatan sulfate proteoglycans and an increased synthesis of free xyloside-dermatan sulfate glycosaminoglycans. Keratan sulfate proteoglycan synthesis was unaltered in both cases. Corneal stromas were studied using histochemistry and electron microscopy after in ovo treatment with beta-D xyloside. The observed biochemical alterations in dermatan sulfate proteoglycans translated into disruptions in the organization of beta-D xyloside-treated stromas. There was a reduction in the histochemical staining of proteoglycans, but no alteration in collagen fibril diameter. In addition, focal alterations in collagen fibril packing, and a disruption of lamellar organization were observed in beta-D xyloside-treated corneas. These data suggest that dermatan sulfate proteoglycans are not involved in the regulation of corneal collagen fibril diameter, but are important in the fibril-fibril spacing as well as in lamellar organization, and cohesiveness.

2001 ◽  
Vol 711 ◽  
Author(s):  
José I. Arias ◽  
Carolina Jure ◽  
Juan P. Wiff ◽  
María S. Fernández ◽  
Víctor Fuenzalida ◽  
...  

ABSTRACTNatural composite bioceramics such as bone, teeth, carapaces and shells contain organic and inorganic moieties, with the organic matrix components directly involved in the precise formation of these structures. We have previously shown that chicken eggshell contains two main sulfated polymers (proteoglycans), referred to as mammillan and ovoglycan which are involved in nucleation and growth of the eggshell calcite crystals. They differ on their anionic properties due to the carboxylate and sulfate content of their glycosaminoglycan component. Based on biological and biochemical evidences, the putative role of mammillan, a keratan sulfate proteoglycan, is in the nucleation of the first calcite crystals, while that of ovoglycan, a dermatan sulfate proteoglycan, is to regulate the growth and orientation of the later forming crystals of the chicken eggshell. In this communication, a systematic study of the influence of variable concentrations of glycosaminoglycans differing in their sulfation status on the morphology, size and number of calcium carbonate crystals after crystallization on microbridges from a calcium chloride solution under an atmosphere of ammonium carbonate at different pH is presented. Depending on the pH and concentration, the variation of sulfation status drastically changed the morphology, size and number of calcite crystals. The produced calcite particles with various morphologies are promising candidates for some novel materials with desirable shape- and texture-depending properties.


1991 ◽  
Vol 39 (10) ◽  
pp. 1321-1330 ◽  
Author(s):  
A D Snow ◽  
R Bramson ◽  
H Mar ◽  
T N Wight ◽  
R Kisilevsky

Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.


1975 ◽  
Vol 171 (1) ◽  
pp. 361-369 ◽  
Author(s):  
Kenneth C. Ehrlich ◽  
Bhandaru Radhakrishnamurthy ◽  
Gerald S. Berenson

Sign in / Sign up

Export Citation Format

Share Document