Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 957-971 ◽  
Author(s):  
J. Mohler ◽  
K. Vani

hedgehog is a segment polarity gene necessary to maintain the proper organization of each segment of the Drosophila embryo. We have identified the physical location of a number of rearrangement breakpoints associated with hedgehog mutations. The corresponding hh RNA is expressed in a series of segmental stripes starting at cellular blastoderm in the posterior portion of each segment. This RNA is localized predominantly within nuclei until stage 10, when the localization becomes primarily cytoplasmic. Expression of hh RNA in the posterior compartment is independent of most other segment polarity genes, including en, until the late extended germ-band stage (stage 11). Sequence analysis of the hedgehog locus suggests the protein product is a transmembrane protein, which may, therefore, be directly involved in cell-cell communication.

Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 987-998 ◽  
Author(s):  
J. Capdevila ◽  
F. Pariente ◽  
J. Sampedro ◽  
J.L. Alonso ◽  
I. Guerrero

The product of the segment polarity gene patched is a transmembrane protein involved in the cell communication processes that establish polarity within the embryonic segments of Drosophila. Monoclonal antibodies have been raised against the patched protein, and by immunoelectron microscopy part of the patched staining is found associated with discrete regions of the lateral plasma membrane of the embryonic epidermal cells. Using a mutation affecting endocytosis (shibire) we find that patched is a membrane-bound protein, which is internalized by endocytosis, and that the preferential sites of accumulation resemble the described localization of the cell-cell adhesive junctions of the epidermal cells. patched partially co-localizes with the wingless protein in the wingless-expressing and nearby cells, in structures that seem to be endocytic vesicles. These data suggest the interaction of patched protein with elements of the reception complex of wingless, as a way to control the wingless expression.


Gene ◽  
1993 ◽  
Vol 124 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Tashiro Shigeki ◽  
Michiue Tatsuo ◽  
Higashijima Shin-ichi ◽  
Zenno Shuhei ◽  
Ishimaru Satoshi ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Craig A. Micchelli ◽  
Inge The ◽  
Erica Selva ◽  
Vladic Mogila ◽  
Norbert Perrimon

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.


1992 ◽  
Vol 118 (3) ◽  
pp. 681-691 ◽  
Author(s):  
M Peifer ◽  
P D McCrea ◽  
K J Green ◽  
E Wieschaus ◽  
B M Gumbiner

Three proteins identified by quite different criteria in three different systems, the Drosophila segment polarity gene armadillo, the human desmosomal protein plakoglobin, and the Xenopus E-cadherin-associated protein beta-catenin, share amino acid sequence similarity. These findings raise questions about the relationship among the three molecules and their roles in different cell-cell adhesive junctions. We have found that antibodies against the Drosophila segment polarity gene armadillo cross react with a conserved vertebrate protein. This protein is membrane associated, probably via its interaction with a cadherin-like molecule. This cross-reacting protein is the cadherin-associated protein beta-catenin. Using anti-armadillo and antiplakoglobin antibodies, it was shown that beta-catenin and plakoglobin are distinct molecules, which can coexist in the same cell type. Plakoglobin interacts with the desmosomal glycoprotein desmoglein I, and weakly with E-cadherin. Although beta-catenin interacts tightly with E-cadherin, it does not seem to be associated with either desmoglein I or with isolated desmosomes. Anti-armadillo antibodies have been further used to determine the intracellular localization of beta-catenin, and to examine its tissue distribution. The implications of these results for the structure and function of different cell-cell adhesive junctions are discussed.


Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 711-719 ◽  
Author(s):  
J. Noordermeer ◽  
P. Johnston ◽  
F. Rijsewijk ◽  
R. Nusse ◽  
P.A. Lawrence

The segment polarity gene wingless has an essential function in cell-to-cell communication during various stages of Drosophila development. The wingless gene encodes a secreted protein that affects gene expression in surrounding cells but does not spread far from the cells where it is made. In larvae, wingless is necessary to generate naked cuticle in a restricted part of each segment. To test whether the local accumulation of wingless is essential for its function, we made transgenic flies that express wingless under the control of a hsp70 promoter (HS-wg flies). Uniform wingless expression results in a complete naked cuticle, uniform armadillo accumulation and broadening of the engrailed domain. The expression patterns of patched, cubitus interruptus Dominant and Ultrabithorax follow the change in engrailed. The phenotype of heatshocked HS-wg embryos resembles the segment polarity mutant naked, suggesting that embryos that overexpress wingless or lack the naked gene enter similar developmental pathways. The ubiquitous effects of ectopic wingless expression may indicate that most cells in the embryo can receive and interpret the wingless signal. For the development of the wild-type pattern, it is required that wingless is expressed in a subset of these cells.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 291-301 ◽  
Author(s):  
A. Hidalgo ◽  
P. Ingham

Intrasegmental patterning in the Drosophila embryo requires the activity of the segment polarity genes. The acquisition of positional information by cells during embryogenesis is reflected in the dynamic patterns of expression of several of these genes. In the case of patched, early ubiquitous expression is followed by its repression in the anterior portion of each parasegment; subsequently each broad band of expression splits into two narrow stripes. In this study we analyse the contribution of other segment polarity gene functions to the evolution of this pattern; we find that the first step in patched regulation is under the control of engrailed whereas the second requires the activity of both cubitus interruptusD and patched itself. Furthermore, the products of engrailed, wingless and hedgehog are essential for maintaining the normal pattern of expression of patched.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 157-170 ◽  
Author(s):  
A. Martinez Arias ◽  
N.E. Baker ◽  
P.W. Ingham

Segment polarity genes are expressed and required in restricted domains within each metameric unit of the Drosophila embryo. We have used the expression of two segment polarity genes engrailed (en) and wingless (wg) to monitor the effects of segment polarity mutants on the basic metameric pattern. Absence of patched (ptc) or naked (nkd) functions triggers a novel sequence of en and wg patterns. In addition, although wg and en are not expressed on the same cells absence of either one has effects on the expression of the other. These observations, together with an analysis of mutant phenotypes during development, lead us to suggest that positional information is encoded in cell states defined and maintained by the activity of segment polarity gene products.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1191-1207 ◽  
Author(s):  
M. Peifer ◽  
S. Orsulic ◽  
D. Sweeton ◽  
E. Wieschaus

The epithelial sheet is a structural unit common to many tissues. Its organization appears to depend on the function of the multi-protein complexes that form adherens junctions. Elegant cell biological experiments have provided support for hypotheses explaining the function of adherens junctions and of their components. These systems, however, lack the ability to test function within an entire organism during development. The realization that the product of the Drosophila segment polarity gene armadillo is related to the vertebrate adhesive junction components plakoglobin and beta-catenin led to the suggestion that armadillo might provide a genetic handle to study adhesive junction structure and function. An examination of the potential function of Armadillo in cell-cell adhesive junctions was initiated using the Drosophila ovary as the model system. We examined the distribution of Armadillo in the Drosophila ovary and demonstrated that this localization often parallels the location of cell-cell adhesive junctions. The consequences of removing armadillo function from the germ-line cells of the ovary were also examined. Germ-line armadillo mutations appear to disrupt processes requiring cell adhesion and integrity of the actin cytoskeleton, consistent with a role for Armadillo in cell-cell adhesive junctions. We have also used armadillo mutations to examine the effects on ovarian development of altering the stereotyped cell arrangements of the ovary. The implications of these results for the role of adhesive junctions during development are discussed.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 283-291 ◽  
Author(s):  
P.W. Ingham ◽  
A. Hidalgo

The segment polarity gene wingless (wg) is expressed in a complex pattern during embryogenesis suggesting that it plays multiple roles in the development of the embryo. The best characterized of these is its role in cell pattening in each parasegment, a process that requires the activity of other segment polarity genes including patched (ptc) and hedgehog (hh). Here we present further evidence that ptc and hh encode components of a signal transduction pathway that regulate the expression of wg transcription following its activation by pair-rule genes. We also show that most other aspects of wg expression are independent of this regulatory network.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Sign in / Sign up

Export Citation Format

Share Document