The neurogenic locus brainiac cooperates with the Drosophila EGF receptor to establish the ovarian follicle and to determine its dorsal-ventral polarity

Development ◽  
1992 ◽  
Vol 116 (1) ◽  
pp. 177-192 ◽  
Author(s):  
S. Goode ◽  
D. Wright ◽  
A.P. Mahowald

We have characterized the function of a new neurogenic locus, brainiac (brn), during oogenesis. Homozygous brn females lay eggs with fused dorsal appendages, a phenotype associated with torpedo (top) alleles of the Drosophila EGF receptor (DER) locus. By constructing double mutant females for both brn and top, we have found that brn is required for determining the dorsal-ventral polarity of the ovarian follicle. However, embryos from mature brn eggs develop a neurogenic phenotype which can be zygotically rescued if a wild-type sperm fertilizes the egg. This is the first instance of a Drosophila gene required for determination of dorsal-ventral follicle cell fates that is not required for determination of embryonic dorsal-ventral cell fates. The temperature-sensitive period for brn dorsal-ventral patterning begins at the inception of vitellogenesis. The interaction between brn and DER is also required for at least two earlier follicle cell activities which are necessary to establish the ovarian follicle. Prefollicular cells fail to migrate between each oocyte/nurse cell complex, resulting in follicles with multiple sets of oocytes and nurse cells. brn and DER function is also required for establishing and/or maintaining a continuous follicular epithelium around each oocyte/nurse cell complex. These brn functions as well as the brn requirement for determination of dorsal-ventral polarity appear to be genetically separable functions of the brn locus. Genetic mosaic experiments show that brn is required in the germline during these processes whereas the DER is required in the follicle cells. We propose that brn may be part of a germline signaling pathway differentially regulating successive DER-dependent follicle cell activities of migration, division and/or adhesion and determination during oogenesis. These experiments indicate that brn is required in both tyrosine kinase and neurogenic intercellular signaling pathways. Moreover, the functions of brn in oogenesis are distinct from those of Notch and Delta, two other neurogenic loci that are known to be required for follicular development.

Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. Sapir ◽  
R. Schweitzer ◽  
B.Z. Shilo

Previous work has demonstrated a role for the Drosophila EGF receptor (Torpedo/DER) and its ligand, Gurken, in the determination of anterioposterior and dorsoventral axes of the follicle cells and oocyte. The roles of DER in establishing the polarity of the follicle cells were examined further, by following the expression of DER-target genes. One class of genes (e.g. kekon) is induced by the DER pathway at all stages. Broad expression of kekon at the stage in which the follicle cells migrate posteriorly over the oocyte, demonstrates the capacity of the pathway to pattern all follicle cells except the ventral-most rows. This may provide the spatial coordinates for the ventral-most follicle cell fates. A second group of target genes (e.g. rhomboid (rho)) is induced only at later stages of oogenesis, and may require additional inputs by signals emanating from the anterior, stretch follicle cells. The function of Rho was analyzed by ectopic expression in the stretch follicle cells, and shown to induce a non-autonomous dorsalizing activity that is independent of Gurken. Rho thus appears to be involved in processing a DER ligand in the follicle cells, to pattern the egg chamber and allow persistent activation of the DER pathway during formation of the dorsal appendages.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4661-4671 ◽  
Author(s):  
N.J. Clegg ◽  
D.M. Frost ◽  
M.K. Larkin ◽  
L. Subrahmanyan ◽  
Z. Bryant ◽  
...  

We describe a mutant, maelstrom, that disrupts a previously unobserved step in mRNA localization within the early oocyte, distinct from nurse-cell-to-oocyte RNA transport. Mutations in maelstrom disturb the localization of mRNAs for Gurken (a ligand for the Drosophila Egf receptor), Oskar and Bicoid at the posterior of the developing (stage 3–6) oocyte. maelstrom mutants display phenotypes detected in gurken loss-of-function mutants: posterior follicle cells with anterior cell fates, bicoid mRNA localization at both poles of the stage 8 oocyte and ventralization of the eggshell. These data are consistent with the suggestion that early posterior localization of gurken mRNA is essential for activation of the Egf receptor pathway in posterior follicle cells. Posterior localization of mRNA in stage 3–6 oocytes could therefore be one of the earliest known steps in the establishment of oocyte polarity. The maelstrom gene encodes a novel protein that has a punctate distribution in the cytoplasm of the nurse cells and the oocyte until the protein disappears in stage 7 of oogenesis.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 745-754 ◽  
Author(s):  
L.L. Dobens ◽  
J.S. Peterson ◽  
J. Treisman ◽  
L.A. Raftery

The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2965-2975 ◽  
Author(s):  
Francesca Peri ◽  
Martin Technau ◽  
Siegfried Roth

The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFα-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Spätzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3355-3362 ◽  
Author(s):  
L. Gabay ◽  
H. Scholz ◽  
M. Golembo ◽  
A. Klaes ◽  
B.Z. Shilo ◽  
...  

The induction of different cell fates along the dorsoventral axis of the Drosophila embryo requires a graded activity of the EGF receptor tyrosine kinase (DER). Here we have identified primary and secondary target genes of DER, which mediate the determination of discrete ventral cell fates. High levels of DER activation in the ventralmost cells trigger expression of the transcription factors encoded by ventral nervous system defective (vnd) and pointed P1 (pntPl). Concomitant with the induction of pntP1, high levels of DER activity lead to inactivation of the Yan protein, a transcriptional repressor of Pointed-target genes. These two antagonizing transcription factors subsequently control the expression of secondary target genes such as otd, argos and tartan. The simultaneous effects of the DER pathway on pntP1 induction and Yan inactivation may contribute to the definition of the border of the ventralmost cell fates.


1963 ◽  
Vol s3-104 (67) ◽  
pp. 297-320
Author(s):  
R. C. KING ◽  
ELIZABETH A. KOCH

Studies are described of the ultrastructure of the follicle cells which invest the oocyte of Drosophila melanogaster at the time of vitelline membrane formation. Of particular interest are organelles made up of endoplasmic reticulum organized into a husk of concentric lamellae which surround lipidal droplets. These epithelial bodies are seen only at the time the vitelline membrane is being formed, and it is assumed therefore that the lipidal material of the epithelial body may be utilized somehow in the fabrication of the vitelline membrane. Cytochemical studies have shown this membrane to contain at least 5 classes of compounds; a protein, two lipids (which may be distinguished by differences in their resistance to extraction by various solvents), and 2 polysaccharides (1 neutral and 1 acidic). Studies were made of vitelline membrane formation in the ovaries of flies homozygous for either of 2 recessive, female-sterile genes (tiny and female sterile). In the case of the ty mutation vitelline membrane material is sometimes secreted between follicle and nurse cells, while in the mutant fes vitelline membrane is observed in rare instances to be secreted between follicle cells and an adjacent layer of tumour cells. In the latter case the vitelline membrane shows altered cytochemical properties. The fact that vitelline membrane can be secreted by follicle cells not adjacent to an oocyte demonstrates that it is the follicle cell rather than the oocyte that plays the major role in the secretion of the precursor material of the vitelline membrane. Subsequently the follicle cells secrete the egg-shell, or chorion, which is subdivided into a dense, compartmented, inner endochorion, and a pale, outer exochorion. A description is given of the ultrastructure of the follicle cells during the secretion of the endochorion and the exochorion. The endochorion contains a protein, a polysaccharide, and a lipid, all of which may be distinguished cytochemically from the vitelline membrane compounds. The exochorion contains large amounts of acidic mucopolysaccharides. Specialized follicle cells form the micropylar apparatus and the chorionic appendages. The formation of the chorion and chorionic appendages is discussed in the light of information gained from abnormalities of the chorions and chorionic appendages seen in ty and fs 2.1 oocytes. Subsequent to the time the egg leaves the ovariole a layer of waterproofing wax is secreted between the vitelline membrane and the chorion.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4553-4562 ◽  
Author(s):  
Deborah J. Goff ◽  
Laura A. Nilson ◽  
Donald Morisato

The dorsal-ventral pattern of the Drosophila egg is established during oogenesis. Epidermal growth factor receptor (Egfr) signaling within the follicular epithelium is spatially regulated by the dorsally restricted distribution of its presumptive ligand, Gurken. As a consequence, pipe is transcribed in a broad ventral domain to initiate the Toll signaling pathway in the embryo, resulting in a gradient of Dorsal nuclear translocation. We show that expression of pipe RNA requires the action of fettucine (fet) in ovarian follicle cells. Loss of maternal fet activity produces a dorsalized eggshell and embryo. Although similar mutant phenotypes are observed with regulators of Egfr signaling, genetic analysis suggests that fet acts downstream of this event. The fet mutant phenotype is rescued by a transgene of capicua (cic), which encodes an HMG-box transcription factor. We show that Cic protein is initially expressed uniformly in ovarian follicle cell nuclei, and is subsequently downregulated on the dorsal side. Earlier studies described a requirement for cic in repressing zygotic target genes of both the torso and Toll pathways in the embryo. Our experiments reveal that cic controls dorsal-ventral patterning by regulating pipe expression in ovarian follicle cells, before its previously described role in interpreting the Dorsal gradient.


Author(s):  
Sifang Liao ◽  
Dick R. Nässel

AbstractIn Drosophila eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells of mature ovaries. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect food intake and starvation resistance. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.


1971 ◽  
Vol 8 (3) ◽  
pp. 735-750
Author(s):  
LUCY M. ANDERSON

A procedure has been developed for separating the oocytes and follicular epithelium-nurse cell complexes making up the vitellogenic ovarian follicle of the Cecropia moth. Both components remained viable during short-term in vitro incubation in female blood. Isolated epithelial cells were found by autoradiography to incorporate tritiated amino acids and to secrete a fixable, non-dialysable labelled material. Isolated oocytes incubated in a blood medium containing this tritiated, dialysed follicle cell product incorporated it in small cortical yolk bodies, presumably by pinocytosis. Quantitative perchloric acid-precipitation and scintillation counting indicated that the amount of labelled material incorporated by the oocytes increased with time. These results provide direct confirmation of a follicle contribution to the yolk. Isolated oocytes were also tested for their ability to incorporate labelled amino acids. Fixable label was observed autoradiographically throughout the oocyte cytoplasm, with the greatest concentration in the cortex, but little appeared in the yolk spheres. The amount of perchloric acid-precipitable amino acid in oocytes incubated in female blood increased with time for up to 2 h and then remained constant or decreased slightly. In medium that had been previously conditioned by follicle cells and dialysed, however, incorporation of labelled amino acid continued for at least 4 h. A possible interpretation of this result is that stimulation of pinocytosis by the epithelial cell products causes increased turnover of cell membrane and demands continued synthesis of new proteins. Labelled female blood proteins were not incorporated into yolk to an appreciable extent by isolated oocytes, even in the presence of follicle cell product. Perhaps extracellular preconcentration, as occurs in the intact follicle, is necessary for effective accrual of blood proteins. The female blood proteins did become associated with the oocyte cortex, however, and exhibited a higher affinity for the oocyte than male blood proteins. Thus preferential adsorption to the oocyte surface may be a component of the selection process in vitellogenesis.


Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2515-2525 ◽  
Author(s):  
S. Kramer ◽  
M. Okabe ◽  
N. Hacohen ◽  
M.A. Krasnow ◽  
Y. Hiromi

Extracellular factors such as FGF and EGF control various aspects of morphogenesis, patterning and cellular proliferation in both invertebrates and vertebrates. In most systems, it is primarily the distribution of these factors that controls the differential behavior of the responding cells. Here we describe the role of Sprouty in eye development. Sprouty is an extracellular protein that has been shown to antagonize FGF signaling during tracheal branching in Drosophila. It is a novel type of protein with a highly conserved cysteine-rich region. In addition to the embryonic tracheal system, sprouty is also expressed in other tissues including the developing eye imaginal disc, embryonic chordotonal organ precursors and the midline glia. In each of these tissues, EGF receptor signaling is known to participate in the control of the correct number of neurons or glia. We show that, in all three tissues, the loss of sprouty results in supernumerary neurons or glia, respectively. Furthermore, overexpression of sprouty in wing veins and ovarian follicle cells, two other tissues where EGF signaling is required for patterning, results in phenotypes that resemble the loss-of-function phenotypes of Egf receptor. These results suggest that Sprouty acts as an antagonist of EGF as well as FGF signaling pathways. These receptor tyrosine kinase-mediated pathways may share not only intracellular signaling components but also extracellular factors that modulate the strength of the signal.


Sign in / Sign up

Export Citation Format

Share Document