Role of transforming growth factor-beta isoforms in regulating the expression of nerve growth factor and neurotrophin-3 mRNA levels in embryonic cutaneous cells at different stages of development

Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1621-1629
Author(s):  
V.L. Buchman ◽  
M. Sporn ◽  
A.M. Davies

We have investigated if transforming growth factor-beta (TGF-beta) isoforms influence the level of expression of nerve growth factor (NGF) mRNA and neurotrophin-3 (NT-3) mRNA in embryonic tissues innervated by neurons that depend on NGF and NT-3 for survival. Presumptive dermal and epidermal cells from the maxillary territory of the embryonic mouse trigeminal ganglion were cultured in defined medium during the early stages of innervation when trigeminal neurons switch their survival dependence from NT-3 to NGF. In E11 and E12 cultures, when the in vivo levels of NGF mRNA and NT-3 mRNA are increasing, TGF-beta 1, TGF-beta 2 and TGF-beta 3 each increased the level of NGF mRNA but had no effect on NT-3 mRNA. In E13 cultures, when the in vivo levels of NGF mRNA and NT-3 mRNA reach a peak (relative to actin mRNA) prior to a marked fall in the level of NT-3 mRNA and a gradual decrease in the level of NGF mRNA, TGF-beta s promoted further increases in the level of NGF mRNA but caused a decrease in the level of NT-3 mRNA. All three TGF-beta mRNAs were detected in the maxillary territory in vivo before the arrival of the earliest axons and their levels rose throughout the period in which sensory axons reach this territory.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 13 (6) ◽  
pp. 3588-3597
Author(s):  
L Scotto ◽  
R K Assoian

Chimeric plasmids containing selected reporter coding domains and portions of the transforming growth factor beta 1 (TGF-beta 1) 3' untranslated region (UTR) were prepared and used to identify potential mechanisms involved in regulating the biosynthesis of TGF-beta 1. Transient transfections with core and chimeric constructs containing the chloramphenicol acetyltransferase (CAT) reporter showed that steady-state CAT mRNA levels were decreased two- to threefold in response to the TGF-beta 1 3' UTR. Interestingly, CAT activity was somewhat increased in the same transfectants. Thus, production of CAT protein per unit of mRNA was stimulated by the TGF-beta 1 3' UTR (approximately fourfold in three cell lines of distinct lineage). The translation-stimulatory effect of the TGF-beta 1 3' UTR suggested by these studies in vivo was confirmed in vitro by cell-free translation of core and chimeric transcripts containing the growth hormone coding domain. These studies showed that production of growth hormone was stimulated threefold by the TGF-beta 1 3' UTR. A deletion analysis in vivo indicated that the GC-rich domain in the TGF-beta 1 3' UTR was responsible for both the decrease in mRNA levels and stimulation of CAT activity-mRNA. We conclude that this GC-rich domain can have a bifunctional effect on overall protein expression. Moreover, the notable absence of this GC-rich domain in TGF-beta 2, TGF-beta 3, TGF-beta 4, and TGF-beta 5 indicates that expression of distinct TGF-beta family members can be differentially controlled in cells.


1992 ◽  
Vol 117 (2) ◽  
pp. 395-400 ◽  
Author(s):  
D Lindholm ◽  
E Castrén ◽  
R Kiefer ◽  
F Zafra ◽  
H Thoenen

Transforming growth factor-beta 1 (TGF-beta 1) has been shown to up-regulate the synthesis of nerve growth factor (NGF) in cultured rat astrocytes and in neonatal brain in vivo (Lindholm, D., B. Hengerer, F. Zafra, and H. Thoenen. 1990. NeuroReport. 1:9-12). Here we show that mRNA encoding TGF-beta 1 increased in rat cerebral cortex after a penetrating brain injury. The level of NGF mRNA is also transiently increased after the brain trauma, whereas that of brain-derived neurotrophic factor remained unchanged. In situ hybridization experiments showed a strong expression of TGF-beta 1 4 d after the lesion in cells within and in the vicinity of the wound. Staining of adjacent sections with OX-42 antibodies, specific for macrophages and microglia/brain macrophages, revealed a similar pattern of positive cells, suggesting that invading macrophages, and perhaps reactive microglia, are the source of TGF-beta 1 in injured brain. Both astrocytes and microglia express TGF-beta 1 in culture, and TGF-beta 1 mRNA levels in astrocytes are increased by various growth factors, including FGF, EGF, and TGF-beta itself. TGF-beta 1 is a strong inhibitor of astrocyte proliferation and suppresses the mitotic effects of FGF and EGF on astrocytes. The present results indicate that TGF-beta 1 expressed in the lesioned brain plays a role in nerve regeneration by stimulating NGF production and by controlling the extent of astrocyte proliferation and scar formation.


1993 ◽  
Vol 13 (6) ◽  
pp. 3588-3597 ◽  
Author(s):  
L Scotto ◽  
R K Assoian

Chimeric plasmids containing selected reporter coding domains and portions of the transforming growth factor beta 1 (TGF-beta 1) 3' untranslated region (UTR) were prepared and used to identify potential mechanisms involved in regulating the biosynthesis of TGF-beta 1. Transient transfections with core and chimeric constructs containing the chloramphenicol acetyltransferase (CAT) reporter showed that steady-state CAT mRNA levels were decreased two- to threefold in response to the TGF-beta 1 3' UTR. Interestingly, CAT activity was somewhat increased in the same transfectants. Thus, production of CAT protein per unit of mRNA was stimulated by the TGF-beta 1 3' UTR (approximately fourfold in three cell lines of distinct lineage). The translation-stimulatory effect of the TGF-beta 1 3' UTR suggested by these studies in vivo was confirmed in vitro by cell-free translation of core and chimeric transcripts containing the growth hormone coding domain. These studies showed that production of growth hormone was stimulated threefold by the TGF-beta 1 3' UTR. A deletion analysis in vivo indicated that the GC-rich domain in the TGF-beta 1 3' UTR was responsible for both the decrease in mRNA levels and stimulation of CAT activity-mRNA. We conclude that this GC-rich domain can have a bifunctional effect on overall protein expression. Moreover, the notable absence of this GC-rich domain in TGF-beta 2, TGF-beta 3, TGF-beta 4, and TGF-beta 5 indicates that expression of distinct TGF-beta family members can be differentially controlled in cells.


1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


1991 ◽  
Vol 174 (3) ◽  
pp. 539-545 ◽  
Author(s):  
J S Silva ◽  
D R Twardzik ◽  
S G Reed

The effects of transforming growth factor beta (TGF-beta) on interferon gamma-mediated killing of the intracellular protozoan parasite Trypanosoma cruzi and on the course of T. cruzi infection in mice were investigated. Spleen cells from mice with acute T. cruzi infections were found to produce elevated levels of biologically active TGF-beta in vitro, and the possibility that TGF-beta may mediate certain aspects of T. cruzi infection was then addressed. When mouse peritoneal macrophages were treated with TGF-beta in vitro, the ability of IFN-gamma to activate intracellular inhibition of the parasite was blocked. This occurred whether cells were treated with TGF-beta either before or after IFN-gamma treatment. TGF-beta treatment also blocked the T. cruzi-inhibiting effects of IGN-gamma on human macrophages. Additionally, treatment of human macrophages with TGF-beta alone led to increased parasite replication in these cells. The effects of TGF-beta on T. cruzi infection in vivo were then investigated. Susceptible C57BL/6 mice developed higher parasitemias and died earlier when treated with TGF-beta during the course of infection. Resistant C57BL/6 x DBA/2 F1 mice treated with TGF-beta also had increased parasitemias, and 50% mortality, compared with no mortality in infected, saline-treated controls. A single dose of TGF-beta, given at the time of infection, was sufficient to significantly decrease resistance to infection in F1 mice and to exacerbate infection in susceptible C57BL/6 mice. Furthermore, a single injection of TGF-beta was sufficient to counter the in vivo protective effects of IFN-gamma. We conclude that TGF-beta, produced during acute T. cruzi infection in mice, is a potent inhibitor of the effects of macrophage activating cytokines in vivo and in vitro and may play a role in regulating infection.


1989 ◽  
Vol 9 (12) ◽  
pp. 5508-5515
Author(s):  
C C Bascom ◽  
J R Wolfshohl ◽  
R J Coffey ◽  
L Madisen ◽  
N R Webb ◽  
...  

Regulation of transforming growth factor beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 mRNAs in murine fibroblasts and keratinocytes by TGF beta 1 and TGF beta 2 was studied. In quiescent AKR-2B fibroblasts, in which TGF beta induces delayed stimulation of DNA synthesis, TGF beta 1 autoregulation of TGF beta 1 expression was observed as early as 1 h, with maximal induction (25-fold) after 6 to 12 h. Increased expression of TGF beta 1 mRNA was accompanied by increased TGF beta protein production into conditioned medium of AKR-2B cells. Neither TGF beta 2 nor TGF beta 3 mRNA, however, was significantly induced, but both were apparently down regulated at later times by TGF beta 1. Protein synthesis was not required for autoinduction of TGF beta 1 mRNA in AKR-2B cells. Nuclear run-on analyses and dactinomycin experiments indicated that autoregulation of TGF beta 1 expression is complex, involving both increased transcription and message stabilization. In contrast to TGF beta 1, TGF beta 2 treatment of quiescent AKR-2B cells increased expression of TGF beta 1, TGF beta 2, and TGF beta 3 mRNAs, but with different kinetics. Autoinduction of TGF beta 2 mRNA occurred rapidly with maximal induction at 1 to 3 h, enhanced TGF beta 3 mRNA levels were observed after 3 h, and increased expression of TGF beta 1 occurred later, with maximal mRNA levels obtained after 12 to 24 h. Nuclear run-on analyses indicated that TGF beta 2 regulation of TGF beta 2 and TGF beta 3 mRNA levels is transcriptional, while TGF beta 2 induction of TGF beta 1 expression most likely involves both transcriptional and posttranscriptional controls. In BALB/MK mouse keratinocytes, minimal autoinduction of TGF beta 1 occurred at only the 12- and 24-h time points and protein synthesis was required for this autoinduction. The results of this study provide an example in which TGF beta 1 and TGF beta 2 elicit different responses and demonstrate that expression of TGF beta 1, and TGF beta 3 are regulated differently. The physiological relevance of TGF beta 1 autoinduction in the context of wound healing is discussed.


1990 ◽  
Vol 172 (6) ◽  
pp. 1777-1784 ◽  
Author(s):  
S C Wallick ◽  
I S Figari ◽  
R E Morris ◽  
A D Levinson ◽  
M A Palladino

Using recombinant DNA technology, we have generated Chinese hamster ovary (CHO) cell lines that synthesize latent transforming growth factor beta 1 (TGF-beta 1) to study immune regulation by TGF-beta 1. In vitro, latent TGF-beta 1 synthesized by transfectants or added exogenously as a purified complex after activation inhibited CTL generation to a similar extent as seen with acid-activated recombinant human (rHu) TGF-beta 1. In vivo, serum from nu/nu mice bearing CHO/TGF-beta 1 tumors contained significant levels of latent TGF-beta 1 in addition to depressed natural killer (NK) activity in spleens which paralleled that seen in C3H/HeJ mice treated with acid-activated rHuTGF-beta 1. rHuTGF-beta 1 treatment of mice receiving heart allografts resulted in significant enhancement of organ graft survival. Because of possible regulated tissue-specific activation, administration of latent rather than active TGF-beta may provide a better route to deliver this powerful immunosuppressive agent in vivo.


1990 ◽  
Vol 10 (9) ◽  
pp. 4978-4983 ◽  
Author(s):  
M C Birchenall-Roberts ◽  
F W Ruscetti ◽  
J Kasper ◽  
H D Lee ◽  
R Friedman ◽  
...  

Growth factor-independent 32D-src and 32D-abl cell lines, established by infecting the interleukin-3-dependent myeloid precursor cell line (32D-123) with retroviruses containing the src or abl oncogene, were used to study transcriptional regulation of transforming growth factor beta 1 (TGF-beta 1) mRNA. Analysis of different TGF-beta 1 promoter constructs regulated by pp60v-src indicated that sequences responsive to high levels of src induction contain binding sites for AP-1. Both src and serum induced expression of the c-fos and c-jun genes in myeloid cells, resulting in transcriptional activation of the TGF-beta 1 gene. We found that serum treatment increased TGF-beta 1 mRNA levels in 32D-123 cells and that the v-Src protein could replace the serum requirement by stimulating binding to the AP-1 complex of the TGF-beta 1 promoter, thereby mediating the induction of TGF-beta 1 transcription.


1995 ◽  
Vol 15 (3) ◽  
pp. 1573-1581 ◽  
Author(s):  
J Cárcamo ◽  
A Zentella ◽  
J Massagué

T beta R-II (transforming growth factor beta [TGF-beta] type II receptor) is a transmembrane serine/threonine kinase that acts as the primary TGF-beta receptor. Ligand binding to T beta R-II leads to the recruitment and phosphorylation of T beta R-I, a distantly related transmembrane kinase that acts as a downstream signaling component. T beta R-I phosphorylation by T beta R-II is shown here to be essential for signaling. A mutant T beta R-II that binds ligand but lacks signaling activity was identified. This mutant was identified by screening with a TGF-beta-inducible vector a series of mink lung epithelial cell clones that have normal TGF-beta binding activity but have lost antiproliferative and transcriptional responses to TGF-beta. When transiently cotransfected with T beta R-II, one of these cell lines, S-21, recovered TGF-beta responsiveness. cDNA cloning and sequencing of T beta R-II from S-21 cells revealed a point mutation that changes proline 525 to leucine in kinase subdomain XI. A recombinant receptor containing this mutation, T beta R-II(P525L), is similar to wild-type T beta R-II in its abilities to bind ligand, support ligand binding to T beta R-I, and form a complex with T beta R-I in vivo. T beta R-II(P525L) has autophosphorylating activity in vitro and in vivo; however, unlike the wild-type receptor, it fails to phosphorylate an associated T beta R-I. These results suggest that T beta R-II(P525L) is a catalytically active receptor that cannot recognize T beta R-I as a substrate. The close link between T beta R-I transphosphorylation and signaling activity argues that transphosphorylation is essential for signal propagation via T beta R-I.


Sign in / Sign up

Export Citation Format

Share Document