Duels without obvious sense: counteracting inductions involved in body wall muscle development in the Caenorhabditis elegans embryo

Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 2219-2232 ◽  
Author(s):  
R. Schnabel

During the first four cleavage rounds of the Caenorhabditis elegans embryo, five somatic founder cells AB, MS, E, C and D are born, which later form the tissues of the embryo. The classical criterion for a cell-autonomous specification of a tissue is the capability of primordial cells to produce this tissue in isolation from the remainder of the embryo. By this criterion, the somatic founder cells MS, C and D develop cell-autonomously. Laser ablation experiments, however, reveal that within the embryonic context these blastomeres form a network of duelling cellular interactions. During normal development, the blastomere D inhibits muscle specification in the MS and the C lineage inhibits muscle specification in the D lineage. These inhibitory interactions are counteracted by two activating inductions. As described before the inhibition of body wall muscle in MS is counteracted by an activating signal from the ABa lineage. Body wall muscle in the D lineage is induced by MS descendants, which suppress an inhibitory activity of the C lineage. The interaction between the D and the MS lineage occurs through the C lineage. An interesting feature of these cell-cell interactions is that they do not serve to discriminate between equivalent cells but are permissive or nonpermissive inductions. No evidence was found that the C-derived body wall muscle also depends on an induction, which suggests that possibly three different pathways coexist in the early embryo to specify body wall muscle, two of which are, in different ways, influenced by cell-cell interactions and a third that is autonomous. This work supplies evidence that cells may acquire transient states during embryogenesis that influence the specification of other cells in the embryo. These states, however, may not be reflected in the developmental potentials of the cells themselves. They can only be scored indirectly by their action on the specification of other cells in the embryo. Blastomeres that behave cell-autonomously in isolation are nevertheless subjected to cell-cell interactions in the embryonic context. Why this should be is an intriguing question. The classical notion has been that blastomeres are specified autonomously in nematodes. In recent years, it was established that at least five inductions are required to determine the AB descendants of C. elegans, whereas the P1 descendants have been typically viewed to develop more autonomously. It appears now that inductions also play a major role during the determination of P1-derived blastomeres.

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


2021 ◽  
Author(s):  
Matthew E. Ochs ◽  
Rebecca McWhirter ◽  
Rob Unckless ◽  
David Miller ◽  
Erik A Lundquist

Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3-prime exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.


2021 ◽  
Author(s):  
Matthew Ochs ◽  
Rebecca McWhirter ◽  
Robert Unckless ◽  
David Miller III ◽  
Erik Lundquist

Abstract Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3’ exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew E. Ochs ◽  
Rebecca M. McWhirter ◽  
Robert L. Unckless ◽  
David M. Miller ◽  
Erik A. Lundquist

AbstractMigration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3′ exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4105-4117 ◽  
Author(s):  
I.P. Moskowitz ◽  
J.H. Rothman

Cell-cell interactions mediated by LIN-12 and GLP-1, members of the LNG (LIN-12, Notch, GLP-1) family of receptors, are required to specify numerous cell fates during development of the nematode Caenorhabditis elegans. Maternally expressed GLP-1 participates in two of at least four sequential inductive interactions that specify the fates of early embryonic descendants of the AB founder cell. We report that GLP-1 and LIN-12, and apparently their ligand, LAG-2, as well as a downstream component, LAG-1, are required in the latter two inductions. We find that LAG-2 is expressed in the signaling cells and LIN-12 is expressed in cells receiving the inductions, consistent with their proposed roles as ligand and receptor, respectively. Furthermore, we report that maternal GLP-1 activity is required (1) to repress early zygotic lag-2 expression and (2) to activate zygotic lin-12 expression in the early embryo. The patterning of both receptor and ligand expression by maternal GLP-1 signaling establishes competence for the zygotic LNG-mediated cellular interactions and localizes these interactions to the appropriate cells. We propose that activation of maternal GLP-1 regulates zygotic lin-12 and lag-2 expression by a regulatory mechanism analogous to that described for the post-embryonic gonad.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S65
Author(s):  
T. Takaya ◽  
H. Terami ◽  
M. Sohda ◽  
T. Iio ◽  
H. Kagawa

2021 ◽  
Author(s):  
Rob C. Oslund ◽  
Tamara Reyes-Robles ◽  
Cory H. White ◽  
Jake H. Tomlinson ◽  
Kelly A. Crotty ◽  
...  

AbstractCell-cell interactions drive essential biological processes critical to cell and tissue development, function, pathology, and disease outcome. The growing appreciation of immune cell interactions within disease environments has led to significant efforts to develop protein- and cell-based therapeutic strategies. A better understanding of these cell-cell interactions will enable the development of effective immunotherapies. However, characterizing these complex cellular interactions at molecular resolution in their native biological contexts remains challenging. To address this, we introduce photocatalytic cell tagging (PhoTag), a modality agnostic platform for profiling cell-cell interactions. Using photoactivatable flavin-based cofactors, we generate phenoxy radical tags for targeted labeling at the cell surface. Through various targeting modalities (e.g. MHC-Multimer, antibody, single domain antibody (VHH)) we deliver a flavin photocatalyst for cell tagging within monoculture, co-culture, and peripheral blood mononuclear cells. PhoTag enables highly selective tagging of the immune synapse between an immune cell and an antigen-presenting cell through targeted labeling at the cell-cell junction. This allowed for the ability to profile gene expression-level differences between interacting and bystander cell populations. Given the modality agnostic and spatio-temporal nature of PhoTag, we envision its broad utilization to detect and profile intercellular interactions within an immune synapse and other confined cellular regions for any biological system.


Development ◽  
2002 ◽  
Vol 129 (21) ◽  
pp. 4999-5008 ◽  
Author(s):  
Caroline A. Spike ◽  
Andrew G. Davies ◽  
Jocelyn E. Shaw ◽  
Robert K. Herman

Previous work has shown that C. elegans MEC-8 is a putative RNA-binding protein that promotes specific alternative splices ofunc-52 transcripts. unc-52 encodes homologs of mammalian perlecan that are located extracellularly between muscle and hypodermis and are essential for muscle development in both embryos and larvae. We show that MEC-8 is a nuclear protein found in hypodermis at most stages of development and not in most late embryonic or larval body-wall muscle. We have also found that overexpression of MEC-8 in hypodermis but not muscle can suppress certainunc-52 mutant phenotypes. These are unexpected results because it has been proposed that UNC-52 is produced exclusively by muscle. We have constructed various tissue-specific unc-52 minigenes fused to a gene for green fluorescent protein that have allowed us to monitor tissue-specificmec-8-dependent alternative splicing; we show that mec-8must be expressed in the same cell type as the unc-52 minigene in order to regulate its expression, supporting the view that MEC-8 acts directly on unc-52 transcripts and that UNC-52 must be synthesized primarily by the hypodermis. Indeed, our analysis of unc-52 genetic mosaics has shown that the focus of unc-52 action is not in body-wall muscle but most likely is in hypodermis.


Sign in / Sign up

Export Citation Format

Share Document