bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3121-3130 ◽  
Author(s):  
M. Kengaku ◽  
H. Okamoto

Vertebrate neural development is initiated during gastrulation by the inductive action of the dorsal mesoderm (Spemann's organizer in amphibians) on neighbouring ectoderm, which eventually gives rise to the central nervous system from forebrain to spinal cord. Here we present evidence that bFGF can mimic the organizer action by inducing Xenopus ectoderm cells in culture to express four position-specific neural markers (XeNK-2, En-2, XIHbox1 and XIHbox6) along the anteroposterior axis. bFGF also induced the expression of a general neural marker NCAM but not the expression of immediate-early mesoderm markers (goosecoid, noggin, Xbra and Xwnt-8), suggesting that bFGF directly neuralized ectoderm cells without forming mesodermal cells. The bFGF dose required to induce the position-specific markers was correlated with the anteroposterior location of their expression in vivo, with lower doses eliciting more anterior markers and higher doses more posterior markers. These data indicate that bFGF or its homologue is a promising candidate for a neural morphogen for anteroposterior patterning in Xenopus. Further, we showed that the ability of ectoderm cells to express the anterior markers in response to bFGF was lost by mid-gastrula, before the organizer mesoderm completely underlies the anterior dorsal ectoderm. Thus, an endogenous FGF-like molecule released from the involuting organizer may initiate the formation of the anteroposterior axis of the central nervous system during the early stages of gastrulation by forming a concentration gradient within the plane of dorsal ectoderm.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


1978 ◽  
Vol 56 (3) ◽  
pp. 535-538 ◽  
Author(s):  
S. W. Tang ◽  
H. C. Stancer ◽  
J. J. Warsh

A new strategy for measurement of brain catecholamines was tested in an animal model. [3H]Norepinephrine was infused intravenously in rabbits to label the peripheral norepinephrine pools. The specific activity of urinary 3-methoxy-4-hydroxymandelic acid was consistently higher than that for 3-methoxy-4-hydroxyphenylglycol (MHPG). Central sympathectomy with 6-hydroxydopamine abolished this difference. Using the formula we propose, it is estimated that 30–50% of urinary MHPG originates from the central nervous system.


2012 ◽  
Vol 10 (1) ◽  
pp. 249-260 ◽  
Author(s):  
Lorenzo Albertazzi ◽  
Lisa Gherardini ◽  
Marco Brondi ◽  
Sebastian Sulis Sato ◽  
Angelo Bifone ◽  
...  

2018 ◽  
Vol 283 ◽  
pp. 126-134 ◽  
Author(s):  
Satoshi Zeniya ◽  
Hiroya Kuwahara ◽  
Kaiichi Daizo ◽  
Akihiro Watari ◽  
Masuo Kondoh ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4737-4748 ◽  
Author(s):  
A. Locascio ◽  
F. Aniello ◽  
A. Amoroso ◽  
M. Manzanares ◽  
R. Krumlauf ◽  
...  

Hox genes play a fundamental role in the establishment of chordate body plan, especially in the anteroposterior patterning of the nervous system. Particularly interesting are the anterior groups of Hox genes (Hox1-Hox4) since their expression is coupled to the control of regional identity in the anterior regions of the nervous system, where the highest structural diversity is observed. Ascidians, among chordates, are considered a good model to investigate evolution of Hox gene, organisation, regulation and function. We report here the cloning and the expression pattern of CiHox3, a Ciona intestinalis anterior Hox gene homologous to the paralogy group 3 genes. In situ hybridization at the larva stage revealed that CiHox3 expression was restricted to the visceral ganglion of the central nervous system. The presence of a sharp posterior boundary and the absence of transcript in mesodermal tissues are distinctive features of CiHox3 expression when compared to the paralogy group 3 in other chordates. We have investigated the regulatory elements underlying CiHox3 neural-specific expression and, using transgenic analysis, we were able to isolate an 80 bp enhancer responsible of CiHox3 activation in the central nervous system (CNS). A comparative study between mouse and Ciona Hox3 promoters demonstrated that divergent mechanisms are involved in the regulation of these genes in vertebrates and ascidians.


Sign in / Sign up

Export Citation Format

Share Document