Tight junction assembly during mouse blastocyst formation is regulated by late expression of ZO-1 alpha+ isoform

Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2027-2037 ◽  
Author(s):  
B. Sheth ◽  
I. Fesenko ◽  
J.E. Collins ◽  
B. Moran ◽  
A.E. Wild ◽  
...  

The mouse preimplantation embryo has been used to investigate the de novo synthesis of tight junctions during trophectoderm epithelial differentiation. We have shown previously that individual components of the tight junction assemble in a temporal sequence, with membrane assembly of the cytoplasmic plaque protein ZO-1 occurring 12 hours before that of cingulin. Subsequently, two alternatively spliced isoforms of ZO-1 (alpha+ and alpha-), differing in the presence or absence of an 80 residue alpha domain were reported. Here, the temporal and spatial expression of these ZO-1 isoforms has been investigated at different stages of preimplantation development. ZO-1alpha- mRNA was present in oocytes and all preimplantation stages, whilst ZO-1alpha+ transcripts were first detected in embryos at the morula stage, close to the time of blastocoele formation. mRNAs for both isoforms were detected in trophectoderm and ICM cells. Immunoprecipitation of 35S-labelled embryos also showed synthesis of ZO-1alpha- throughout cleavage, whereas synthesis of ZO-1alpha+ was only apparent from the blastocyst stage. In addition, 33P-labelling showed both isoforms to be phosphorylated at the early blastocyst stage. The pattern and timing of membrane assembly of the two isoforms was also distinct. ZO-1alpha- was initially seen as punctate sites at the cell-cell contacts of compact 8-cell embryos. These sites then coalesced laterally along the membrane until they completely surrounded each cell with a zonular belt by the late morula stage. ZO-1alpha+ however, was first seen as perinuclear foci in late morulae before assembling at the tight junction. Membrane assembly of ZO-1alpha+ first occurred during the 32-cell stage and was zonular just prior to the early blastocyst stage. Immunostaining indicative of both isoforms was restricted to the trophectoderm lineage. Membrane assembly of ZO-1alpha+ and blastocoele formation were sensitive to brefeldin A, an inhibitor of intracellular trafficking beyond the Golgi complex. In addition, the tight junction transmembrane protein occludin co-localised with ZO-1alpha+ at the perinuclear sites in late morulae and at the newly assembled cell junctions. These results provide direct evidence from a native epithelium that ZO-1 isoforms perform distinct roles in tight junction assembly. Moreover, the late expression of ZO-1alpha+ and its apparent intracellular interaction with occludin may act as a final rate-limiting step in the synthesis of the tight junction, thereby regulating the time of junction sealing and blastocoele formation in the early embryo.

2013 ◽  
Vol 25 (1) ◽  
pp. 255
Author(s):  
C. Sauvegarde ◽  
D. Paul ◽  
R. Rezsohazy ◽  
I. Donnay

Hox genes encode for homeodomain transcription factors well known to be involved in developmental control after gastrulation. However, the expression of some of these genes has been detected during oocyte maturation and early embryo development. An interesting expression profile has been obtained for HOXB9 in the bovine (Paul et al. 2011 Mol. Reprod. Dev. 78, 436): its relative expression increases between the immature oocyte and the zygote, further increases at the 5- to 8-cell stage to peak at the morula stage before decreasing at the blastocyst stage. The main objective of this work is to establish the HOXB9 protein profile from the immature oocyte to the blastocyst in the bovine. Bovine embryos were produced in vitro from immature oocytes obtained from slaughterhouse ovaries. Embryos were collected at the following stages: immature oocyte, mature oocyte, zygote (18 h post-insemination, hpi), 2-cell (26 hpi), 5 to 8 cell (48 hpi), 9 to 16 cell (96 hpi), morula (120 hpi), and blastocyst (180 hpi). The presence and distribution of HOXB9 proteins were detected by whole-mount immunofluorescence followed by confocal microscopy using an anti-human HOXB9 polyclonal antibody directed against a sequence showing 100% homology with the bovine protein. Its specificity to the bovine protein was controlled by Western blot on total protein extract from the bovine uterus and revealed, among a few bands of weak intensities, 2 bands of high intensity corresponding to the expected size. Oocytes or embryos were fixed and incubated overnight with rabbit anti-HOXB9 (Sigma, St. Louis, MO, USA) and mouse anti-E-cadherin (BD Biosciences, Franklin Lakes, NJ, USA) primary antibodies and then for 1 h with goat anti-rabbit Alexafluor 555 conjugated (Cell Signaling Technology, Beverly, MA, USA) and goat anti-mouse FITC-conjugated (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) secondary antibodies. Embryos were then mounted in Vectashield containing DAPI. HOXB9 is detected from the immature oocyte to the blastocyst stage. At the immature oocyte stage, it is mainly localised in the germinal vesicle with a weak signal in the cytoplasm. At the mature oocyte stage, HOXB9 labelling is present in the cytoplasm. At the zygote stage, a stronger immunoreactivity is observed in the pronuclei than in the cytoplasm. From the 2-cell stage to the morula stage, the presence of HOXB9 is also more important in the nuclei than in the cytoplasm. HOXB9 is also observed at the blastocyst stage where it is localised in the nuclei of the trophectoderm cells, whereas an inconstant or weaker labelling is observed in the inner cell mass cells. In conclusion, we have shown for the first time the presence of the HOXB9 protein throughout early bovine embryo development. The results obtained suggest the presence of the maternal HOXB9 protein because it is already detected before the maternal to embryonic transition that occurs during the fourth cell cycle in the bovine. Finally, the pattern obtained at the blastocyst stage suggests a differential role of HOXB9 in the inner cell mass and trophectoderm cells. C. Sauvegarde holds a FRIA PhD grant from the Fonds National de la Recherche Scientifique (Belgium).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julien Richard Albert ◽  
Wan Kin Au Yeung ◽  
Keisuke Toriyama ◽  
Hisato Kobayashi ◽  
Ryutaro Hirasawa ◽  
...  

Abstract De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.


1989 ◽  
Vol 108 (4) ◽  
pp. 1407-1418 ◽  
Author(s):  
T P Fleming ◽  
J McConnell ◽  
M H Johnson ◽  
B R Stevenson

Tight junction development during trophectoderm biogenesis in the mouse preimplantation embryo has been examined using monoclonal antibodies recognizing the tight junction-specific peripheral membrane protein, ZO-1. In immunoblots, mouse embryo ZO-1 had a molecular mass (225 kD) equivalent to that in mouse liver, was barely detectable in four-cell embryos although later stages exhibited increasing levels. ZO-1 was first detected immunocytochemically at the compacting eight-cell stage, coincident with or just after the expression of basolateral cell adhesion and apical microvillous polarity. Initially, ZO-1 was present as a series of spots along the boundary between free and apposed cell surfaces in intact embryos or cell couplets, but subsequently staining became more linear with blastocyst trophectoderm cells being bordered by a continuous ZO-1 belt. Inhibition of cell adhesion at the 8-cell stage delayed ZO-1 appearance and randomized its surface distribution in a reversible manner. Microfilament disruption, but not microtubule depolymerization, produced major disturbances in ZO-1 distribution. ZO-1 assembly de novo appeared to be independent of proximate DNA and RNA synthesis but was inhibited substantially in the absence of protein synthesis during the eight-cell stage, a treatment that did not prevent intercellular adhesion and polarization. ZO-1 surface assembly, but not adhesion and polarization, was also perturbed when single eight-cells were combined with single four-cells. The results suggest that tight junction development in mouse embryos is a secondary event in epithelial biogenesis, being dependent upon cell adhesion and cytoskeletal activity for normal expression, and can be disrupted without disturbing the generation of a stably polarized phenotype.


2020 ◽  
Author(s):  
Julien Richard Albert ◽  
Wan Kin Au Yeung ◽  
Keisuke Toriyama ◽  
Hisato Kobayashi ◽  
Ryutaro Hirasawa ◽  
...  

ABSTRACTDe novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. Following fertilization, the paternal genome undergoes widespread DNAme loss before the first S-phase. Paradoxically, recent mass spectrometry analysis revealed that a low level of de novo DNAme occurs exclusively on the zygotic paternal genome. However, the loci involved and impact on genic transcription was not addressed. Here, we employ allele-specific analysis of wholegenome bisulphite sequencing (WGBS) data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome in 2-cell embryos. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with zygotic paternal DNAme acquisition (PDA), many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Strikingly, PDA is lost following maternal deletion of Dnmt3a. Furthermore, a subset of promoters showing PDA which are normally transcribed from the paternal allele in blastocysts show premature transcription at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover an unexpected role for maternal DNMT3A activity in postfertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1135-1144 ◽  
Author(s):  
T.P. Fleming ◽  
M. Hay ◽  
Q. Javed ◽  
S. Citi

The molecular maturation of the tight junction in the mouse early embryo has been investigated by monitoring the distribution of cingulin, a 140 × 10(3) M(r) peripheral (cytoplasmic) membrane constituent of the junction, at different stages of development and in different experimental situations. Although tight junction formation does not begin until compaction at the 8-cell stage, cingulin is detectable in oocytes and all stages of cleavage, a factor consistent with our biochemical analysis of cingulin expression (Javed et al., 1992, Development 117, 1145–1151). Using synchronised egg and embryo stages and isolated cell clusters, we have identified three sites where cingulin is localised, the cytocortex, punctate cytoplasmic foci and tight junctions themselves. Cytocortical cingulin is present at the cumulus-oocyte contact site (both cell types), in unfertilised and fertilised eggs and in cleavage stages up to 16-cell morulae, particularly at microvillous domains on the embryo outer surface (eg. apical poles at compaction). Embryo manipulation experiments indicate that cortical cingulin is labile and dependent upon cell interactions and therefore is not merely an inheritance from the egg. Cingulin cytoplasmic foci are evident only in outer cells (prospective trophectoderm) from the 32-cell stage, just prior to cavitation, and decline from approx. 8 hours after cavitation has initiated. The appearance of these foci is insensitive to cycloheximide treatment and they colocalise with apically derived endocytic vesicles visualised by FITC-dextran, indicating that the foci represent the degradation of cytocortical cingulin by endocytic turnover. Cingulin is detectable at the tight junction site between blastomeres usually from the 16-cell stage, although earlier assembly occurs in a minority (up to 20%) of specimens. Cingulin assembly at the tight junction is sensitive to cycloheximide and is identifiable approx. 10 hours after cell adhesion is initiated and ZO-1 protein assembles. Collectively, our results indicate that (i) cingulin from nonjunctional sites does not contribute to tight junction assembly and (ii) the molecular maturation of the junction appears to occur progressively over at least two cell cycles.


1997 ◽  
Vol 9 (2) ◽  
pp. 201 ◽  
Author(s):  
Henry Sathananthan ◽  
Lynne Selwood ◽  
Isabel Douglas ◽  
Kamani Nanayakkara

The development of Antechinus stuartiifrom the 2-cell stage to the blastocyst stage in vivo was examined by routine transmission electron microscopy. The 2–8-cell stages had a similar organization of organelles, whereas the 16- to 32-cell stages had pluriblast cells and trophoblast cells forming an epithelium closely apposed to the zona pellucida. Specialized cell–zona plugs were formed at the 8-cell stage, and primitive cell junctions appeared in later conceptuses. The cytoplasmic organelles included mitochondria, lysosomes, aggregates of smooth endoplasmic reticulum, lipid and protein yolk bodies and fibrillar arrays, possibly contractile in function. Nuclei had uniformly-dispersed dense chromatin. Nucleoli of 2–4-cell conceptuses were dense, compact and fibrillar, and those of 8-cell conceptuses and later conceptuses were finely granular and became progressively reticulated. The embryonic genome is probably not switched on before the 8-cell stage. Sperm tails were detected in cells in several early conceptuses. The yolk mass had the same organelles as cells. Centrioles were discovered for the first time in marsupial conceptuses. These were prominently situated at a spindle pole in a 32-cell blastomere and were associated with a nucleus and sperm tail at the 4-cell stage. It is very likely that the paternal centrosome is inherited at fertilization and perpetuated in Antechinus embryos during cleavage.


2015 ◽  
Vol 27 (1) ◽  
pp. 186
Author(s):  
P. Tribulo ◽  
J. I. Moss ◽  
P. J. Hansen

Wingless-related mouse mammary tumour virus (WNT) signalling participates in early embryonic development to maintain pluripotency, controls cell–cell communication, and modulates cell polarization and migration. To gain an understanding of the regulation of WNT signalling during embryonic development, expression patterns of a variety of molecules involved in WNT signal transduction were evaluated. Specific genes were DKK1, an endogenous inhibitor of canonical WNT signalling, the WNT co-receptors LRP5 and LRP6, WNT-responsive transcription factors, LEF1 and TCF7, and two repressors of WNT-regulated genes, the bovine orthologue of GROUCHO (LOC505120) and AES. Embryos were produced in vitro from oocytes obtained from ovaries collected at a local abattoir. Following oocyte maturation, fertilization was performed with sperm pooled from three randomly selected bulls; a different pool of bulls was used for each replicate. Groups of 30 matured oocytes or embryos at the 2-cell [28–32 h post-insemination (hpi)], 3–4 cell (44–48 hpi), 5–8 cell (50–55 hpi), 9–16 cell (72–75 hpi), morula (120–123 hpi), and blastocyst (168–171 hpi) stages were collected. The zona pellucida was removed with proteinase, RNA was purified, cDNA synthesised using random hexamer primers and real-time qPCR performed. Data analysed were ΔCT values, which were calculated by subtracting the CT value of the geometric mean of the three housekeeping genes (GAPDH, YWHAZ, and SDHA) from the CT value of the sample. The relative transcript abundance was calculated as the 2ΔCT. Data were analysed by least-squares ANOVA using the Proc GLM procedure of SAS (SAS Institute Inc., Cary, NC, USA). A total of 5 replicates were analysed for each developmental stage. Results show significant effects of stage of development for each gene that ranged from P = 0.004 for LRP5 to P ≤ 0.0001 for AES, DKK1, LEF, LOC505120, LRP6, and TCF7. In all cases, expression declined as development advanced. Except for AES, lowest expression occurred at the blastocyst stage. Lowest expression for AES was at the morula stage; expression remained low at the blastocyst stage. For two genes, DKK1 and LEF1, there was no detectable expression at the blastocyst stage. The timing of decline in expression varied between genes, first occurring at the 9–16-cell stage (AES, LEF1, and LOC505120) or morula stage (DKK1, LRP5, LRP6, or TCF7). For DKK1, LEF1, and LRP6, there was also a slight increase in expression from the oocyte to two-cell stage. Results suggest that canonical WNT signalling is reduced at the morula and blastocyst stages relative to earlier stages in development. Research was supported by USDA-NIFA 2011-67015-30688.


2009 ◽  
Vol 21 (9) ◽  
pp. 43
Author(s):  
Y. Li ◽  
H. D. Morgan ◽  
L. Ganeshan ◽  
C. O'Neill

In an accompanying abstract we show for the first time that global demethylation of both paternally- and maternally-derived genomes occurs prior to syngamy. It is commonly considered that new methylation of the genome does not commence until late in the preimplantation stage. Yet embryos during cleavage stage are known to show DNA methylation. This creates a paradox, if global demethylation occurs by the time of syngamy yet remethylation does not occur until the blastocysts stage, how can cleavage stage embryos possess methylated DNA. We examined this paradox. We examined DNA methylation in 2-cell embryos by confocal microscopy of anti-methylcytosine immunofluorescence and propidium iodide co-staining of whole mounts. We confirmed that DNA in late zygotes was substantially demethylated in both the male and female pronuclei. By the 2-cell stage, embryos collected direct from the oviduct showed high levels of cytosine methylation. We assessed whether this accumulation of cytosine methylation during the early 2-cell stage was a consequence of DNA methyltransferase (DNMT) activity. This was achieved by treating late stage zygotes with the DNMT inhibitor RG108 (5 μM) for the period of development spanning pronuclear stage 5 to early 2-cell stage. The embryos that developed in the presence of the DNA methyltransferase inhibitor showed significantly less methylcytosine staining than the embryos in the untreated culture conditions (P<0.001). Treatment of embryos during this period with RG108 significantly reduced their capacity to develop to normal blastocysts, indicating that this early DNA re-methylation reaction was important for the normal development of the embryo. Our results show for the first time that de novo methylation of the genome occurs as early as the 2-cell stage of development and that this is mediated by a RG108-sensitive DNMT activity. The results substantially change our understanding of epigenetic reprogramming in the early embryo.


Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 625-636 ◽  
Author(s):  
Chang-Gi Hur ◽  
Eun-Jin Kim ◽  
Seong-Keun Cho ◽  
Young-Woo Cho ◽  
Sook-Young Yoon ◽  
...  

Numerous studies have suggested that K+ channels regulate a wide range of physiological processes in mammalian cells. However, little is known about the specific function of K+ channels in germ cells. In this study, mouse zygotes were cultured in a medium containing K+ channel blockers to identify the functional role of K+ channels in mouse embryonic development. Voltage-dependent K+ channel blockers, such as tetraethylammonium and BaCl2, had no effect on embryonic development to the blastocyst stage, whereas K2P channel blockers, such as quinine, selective serotonin reuptake inhibitors (fluoxetine, paroxetine, and citalopram), gadolinium trichloride, anandamide, ruthenium red, and zinc chloride, significantly decreased blastocyst formation (P<0.05). RT-PCR data showed that members of the K2P channel family, specifically KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9, were expressed in mouse oocytes and embryos. In addition, their mRNA expression levels, except Kcnk3, were up-regulated by above ninefold in morula-stage embryos compared with 2-cell stage embryos (2-cells). Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed in the membrane of oocytes, 2-cells, and blastocysts. Each siRNA injection targeted at Kcnk2, Kcnk10, Kcnk4, Kcnk3, and Kcnk9 significantly decreased blastocyst formation by ∼38% compared with scrambled siRNA injection (P<0.05). The blockade of K2P channels acidified the intracellular pH and depolarized the membrane potential. These results suggest that K2P channels could improve mouse embryonic development through the modulation of gating by activators.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 295-304 ◽  
Author(s):  
T.P. Fleming ◽  
M.J. Hay

The processes governing differential protein expression in preimplantation lineages were investigated using a monoclonal antibody recognising the tight junction polypeptide, ZO-1. ZO-1 localises to the maturing tight junction membrane domain in the polarised trophectoderm lineage from compaction (8-cell stage) onwards, ultimately forming a zonular belt around each trophectoderm cell of the blastocyst (32- to 64-cell stage). The protein is usually undetectable within the inner cell mass (ICM) although, in a minority of embryos, punctate ZO-1 sites are present on the surface of one or more ICM cells. Since ICM cells derive from the differentiative division of polarised 8- and 16-cell blastomeres, the distribution of ZO-1 following differentiative division in isolated, synchronised cell clusters of varying size, was examined. In contrast to the apical cytocortical pole, ZO-1 was found to be inherited by nonpolar (prospective ICM) as well as polar (prospective trophectoderm) daughter cells. Following division, polar cells adhere to and gradually envelop nonpolar cells. Prior to envelopment, ZO-1 localises to the boundary between the contact area and free membrane of daughter cells, irrespective of their phenotype. After envelopment, polar cells retain these ZO-1 contact sites whilst nonpolar cells lose them, in which case ZO-1 transiently appears as randomly-distributed punctate sites on the membrane before disappearing. Thus, symmetrical cell contact appears to initiate ZO-1 down-regulation in the ICM lineage. The biosynthetic level at which ZO-1 down-regulation occurs was investigated in immunosurgically isolated ICMs undergoing trophectoderm regeneration. By 6 h in culture, isolated ICMs generated a zonular network of ZO-1 at the contact area between outer cells, thereby demonstrating the reversibility of down-regulation. This assembly process was unaffected by alpha-amanitin treatment but was inhibited by cycloheximide. These results indicate that the ICM inherits and stabilises ZO-1 transcripts which can be utilised for rapid synthesis and assembly of the protein, a capacity that may have significance both in maintaining lineage integrity within the blastocyst and in the subsequent development of the ICM.


Sign in / Sign up

Export Citation Format

Share Document