Cell determination strategies in the Drosophila eye

Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 261-270 ◽  
Author(s):  
M. Freeman

Cells in the Drosophila eye are determined by inductive signalling. Here I describe a new model of eye development that explains how simple intercellular signals could specify the diverse cell types that constitute the ommatidium. This model arises from the recent observation that the Drosophila homologue of the EGF receptor (DER) is used reiteratively to trigger the differentiation of each of the cell types--successive rounds of DER activation recruit first the photoreceptors, then cone and finally pigment cells. It seems that a cell's identity is not determined by the specific signal that induces it, but is instead a function of the state of the cell when it receives the signal. DER signalling is activated by the ligand, Spitz, and inhibited by the secreted protein, Argos. Spitz is initially produced by the central cells in the ommatidium and diffuses over a small distance. Argos has a longer range, allowing it to block more distal cells from being activated by low levels of Spitz; I have termed this interplay between a short-range activator and a long-range inhibitor ‘remote inhibition’. Since inductive signalling is common in many organisms and its components have been conserved, it is possible that the logic of signalling may also be conserved.

2000 ◽  
Vol 78 (5) ◽  
pp. 569-575 ◽  
Author(s):  
Timothy E Kennedy

Netrins are secreted proteins that direct axon extension and cell migration during neural development. They are bifunctional cues that act as an attractant for some cell types and as a repellent for others. Several lines of evidence suggest that two classes of receptors, the deleted in colorectal cancer (DCC) family and the UNC-5 family, mediate the attractant and repellent response to netrin. Although netrins were first identified as diffusible long-range cues for developing axons, recent findings provide evidence that they also function as short-range cues close to the surface of the cells that produce them. This short-range function of netrin contributes to guiding neurite outgrowth and mediating cell-cell interactions during development and perhaps also in adults.


Nature ◽  
2021 ◽  
Author(s):  
Siyu Chen ◽  
Linda Lee ◽  
Tasmin Naila ◽  
Susan Fishbain ◽  
Annie Wang ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Roman Sherrod ◽  
Eric C. O’Quinn ◽  
Igor M. Gussev ◽  
Cale Overstreet ◽  
Joerg Neuefeind ◽  
...  

AbstractThe structural response of Dy2TiO5 oxide under swift heavy ion irradiation (2.2 GeV Au ions) was studied over a range of structural length scales utilizing neutron total scattering experiments. Refinement of diffraction data confirms that the long-range orthorhombic structure is susceptible to ion beam-induced amorphization with limited crystalline fraction remaining after irradiation to 8 × 1012 ions/cm2. In contrast, the local atomic arrangement, examined through pair distribution function analysis, shows only subtle changes after irradiation and is still described best by the original orthorhombic structural model. A comparison to Dy2Ti2O7 pyrochlore oxide under the same irradiation conditions reveals a different behavior: while the dysprosium titanate pyrochlore is more radiation resistant over the long-range with smaller degree of amorphization as compared to Dy2TiO5, the former involves more local atomic rearrangements, best described by a pyrochlore-to-weberite-type transformation. These results highlight the importance of short-range and medium-range order analysis for a comprehensive description of radiation behavior.


2021 ◽  
Vol 4 (3) ◽  
pp. 49
Author(s):  
Tomas Zelenka ◽  
Charalampos Spilianakis

The functional implications of the three-dimensional genome organization are becoming increasingly recognized. The Hi-C and HiChIP research approaches belong among the most popular choices for probing long-range chromatin interactions. A few methodical protocols have been published so far, yet their reproducibility and efficiency may vary. Most importantly, the high frequency of the dangling ends may dramatically affect the number of usable reads mapped to valid interaction pairs. Additionally, more obstacles arise from the chromatin compactness of certain investigated cell types, such as primary T cells, which due to their small and compact nuclei, impede limitations for their use in various genomic approaches. Here we systematically optimized all the major steps of the HiChIP protocol in T cells. As a result, we reduced the number of dangling ends to nearly zero and increased the proportion of long-range interaction pairs. Moreover, using three different mouse genotypes and multiple biological replicates, we demonstrated the high reproducibility of the optimized protocol. Although our primary goal was to optimize HiChIP, we also successfully applied the optimized steps to Hi-C, given their significant protocol overlap. Overall, we describe the rationale behind every optimization step, followed by a detailed protocol for both HiChIP and Hi-C experiments.


2021 ◽  
Vol 22 (14) ◽  
pp. 7360
Author(s):  
Angie De La Cruz ◽  
Aubrey Hargrave ◽  
Sri Magadi ◽  
Justin A. Courson ◽  
Paul T. Landry ◽  
...  

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


1977 ◽  
Vol 38 (C7) ◽  
pp. C7-202-C7-206 ◽  
Author(s):  
R. MORET ◽  
M. HUBER ◽  
R. COMÈS

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. S. Markiewicz ◽  
J. Lorenzana ◽  
G. Seibold ◽  
A. Bansil
Keyword(s):  

2002 ◽  
Vol 14 (03) ◽  
pp. 273-302 ◽  
Author(s):  
HERIBERT ZENK

We give a short summary on how to combine and extend results of Combes and Hislop [2] (short range Anderson model with additional displacements), Kirsch, Stollmann and Stolz [13] and [14] (long range Anderson model without displacements) to get localization in an energy interval above the infimum of the almost sure spectrum for a continuous multidimensional Anderson model including long range potentials and displacements.


Sign in / Sign up

Export Citation Format

Share Document