Clathrin heavy chain is required for spore cell but not stalk cell differentiation in Dictyostelium discoideum

Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 443-451
Author(s):  
M.L. Niswonger ◽  
T.J. O'Halloran

Previous studies of a clathrin-minus Dictyostelium cell line revealed important roles for clathrin heavy chain (clathrin) in endocytosis, secretion of lysosomal hydrolases and osmoregulation. In this paper, we examine the contribution of clathrin-mediated membrane traffic to development in Dictyostelium discoideum. Clathrin-minus cells were delayed in early development. When exposed to starvation conditions, clathrin-minus cells streamed and aggregated more slowly than wild-type cells. Although clathrin-minus cells displayed only 40% the level of extracellular cyclic AMP binding normally found in wild-type cells, they responded chemotactically to extracellular cyclic AMP. Clathrin-minus cells down-regulated cyclic AMP receptors, but only to half the extent of wild-type cells. We found that the extent of development of clathrin-minus cells was variable and influenced by environmental conditions. Although the mutant cells always progressed beyond the tipped mound stage, the final structure varied from a finger-like projection to a short, irregular fruiting body. Microscopic examination of these terminal structures revealed the presence of intact stalks but a complete absence of spores. Clathrin-minus cells expressed prestalk (ecmA and ecmB) and prespore (psA and cotB) genes normally, but were blocked in expression of the sporulation gene spiA. Using clathrin-minus cells that had been transformed with various promoter-lacZ reporter constructs, we saw only partial sorting of clathrin-minus prestalk and prespore cells. Even when mixed with wild-type cells, clathrin-minus cells failed to sort correctly and never constructed functional spores. These results suggest three roles for clathrin during Dictyostelium development. First, clathrin increases the efficiency of early development. Second, clathrin enables proper and efficient patterning of prestalk and prespore cells during culmination. Third, clathrin is essential for differentiation of mature spore cells.

1994 ◽  
Vol 126 (2) ◽  
pp. 343-352 ◽  
Author(s):  
T Ruscetti ◽  
J A Cardelli ◽  
M L Niswonger ◽  
T J O'Halloran

The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain-deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.


1979 ◽  
Vol 35 (1) ◽  
pp. 321-338
Author(s):  
C. Rossier ◽  
G. Gerisch ◽  
D. Malchow

Adenosine 3′,5′-cyclic phosphorothioate (cAMP-S) is a cyclic AMP (cAMP) analogue which is only slowly hydrolysed by phosphodiesterases of Dictyostelium discoideum. The affinity of cAMP-S to cAMP receptors at the cell surface is only one order of magnitude lower than that of cAMP. cAMP-S can replace cAMP as a stimulant with respect to all receptor-mediated responses tested, including chemotaxis and the induction of cAMP pulses. cAMP-S does not affect growth of D. discoideum but it blocks cell aggregation at a uniform concentration of 5 × 10(−7) M in agar plate cultures of strain NC-4 as well as its axenically growing derivative, Ax-2. Another wild-type strain of D. discoideum, v-12, is able to aggregate on agar plates supplemented with 1 mM cAMP-S. The development of Polysphondylium pallidum and P. violaceum is also highly cAMP-S resistant. In Ax-2 both differentiation from the growth phase to the aggregation-competent stage and chemotaxis are cAMP-S sensitive, whereas in v-12 only chemotaxis is inhibited. v-12 can still form streams of cohering cells and fruiting bodies when chemotaxis is inhibited by cAMP-S. Whereas cAMP induces differentiation into stalk cells at concentrations of 10(−3) or 10(−4) M, cAMP-S has the same effect in strain v-12 at the much lower concentration of 10(−6) M.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 569-574 ◽  
Author(s):  
M. Wang ◽  
P. Schaap

The differentiation-inducing factor, DIF, was induce stalk cell differentiation in Dictyostelium incubated as submerged monolayers. We investigated the regulates the differentiation of stalk cells in the was found that in migrating or submerged slugs DIF cell differentiation, which is most likely due to the antagonist. Cyclic AMP and ammonia were earlier antagonists in vitro. We show here that ammonia, but an antagonist for DIF-induced stalk cell can induce stalk cell differentiation when ammonia are enzymically depleted. However, depletion of cAMP increase the efficacy of DIF. We propose that the cell differentiation during early culmination may be drop in ammonia levels inside the organism.


1991 ◽  
Vol 11 (8) ◽  
pp. 3868-3878 ◽  
Author(s):  
A L Munn ◽  
L Silveira ◽  
M Elgort ◽  
G S Payne

The gene encoding clathrin heavy chain in Saccharomyces cerevisiae (CHC1) is not essential for growth in most laboratory strains tested. However, in certain genetic backgrounds, a deletion of CHC1 (chc1) results in cell death. Lethality in these chc1 strains is determined by a locus designated SCD1 (suppressor of clathrin deficiency) which is unlinked to CHC1 (S. K. Lemmon and E. W. Jones, Science 238:504-509, 1987). The lethal allele of SCD1 has no effect on cell growth when the wild-type version of CHC1 is present. This result led to the proposal that most yeast strains are viable in the absence of clathrin heavy chain because they possess the SCD1 suppressor. Discovery of another yeast strain that cannot grow without clathrin heavy chain has allowed us to perform a genetic test of the suppressor hypothesis. Genetic crosses show that clathrin-deficient lethality in the latter strain is conferred by a single genetic locus (termed CDL1, for clathrin-deficient lethality). By constructing strains in which CHC1 expression is regulated by the GAL10 promoter, we demonstrate that the lethal alleles of SCD1 and CDL1 are recessive. In both cases, very low expression of CHC1 can allow cells to escape from lethality. Genetic complementation and segregation analyses indicate that CDL1 and SCD1 are distinct genes. The lethal CDL1 allele does not cause a defect in the secretory pathway of either wild-type or clathrin heavy-chain-deficient yeast. A systematic screen to identify mutants unable to grow in the absence of clathrin heavy chain uncovered numerous genes similar to SCD1 and CDL1. These findings argue against the idea that viability of chc1 cells is due to genetic suppression, since this hypothesis would require the existence of a large number of unlinked genes, all of which are required for suppression. Instead, lethality appears to be a common, nonspecific occurrence when a second-site mutation arises in a strain whose cell growth is already severely compromised by the lack of clathrin heavy chain.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 978-989 ◽  
Author(s):  
Koki Nagayama ◽  
Tetsuo Ohmachi

We investigated the expression of the α subunit of the Dictyostelium mitochondrial processing peptidase (Ddα-MPP) during development. Ddα-MPP mRNA is expressed at the highest levels in vegetatively growing cells and during early development, and is markedly downregulated after 10 h of development. The Ddα-MPP protein is expressed as two forms, designated α-MPPH and α-MPPL, throughout the Dictyostelium life cycle. The larger form, α-MPPH, is cleaved to produce the functional α-MPPL form. We were not able to isolate mutants in which the α-mpp gene had been disrupted. Instead, an antisense transformant, αA2, expressing α-MPP at a lower level than the wild-type AX-3 was isolated to examine the function of the α-MPP protein. Development of the αA2 strain was normal until the slug formation stage, but the slug stage was prolonged to ∼24 h. In this prolonged slug stage, only α-MPPH was present, and α-MPPL protein and MPP activity were not detected. After 28 h, α-MPPL and MPP activity reappeared, and normal fruiting bodies were formed after a delay of approximately 8 h compared with normal development. These results indicate that MPP activity is controlled by the processing of α-MPPH to α-MPPL during development in Dictyostelium.


2016 ◽  
Author(s):  
Giovanna De Palo ◽  
Darvin Yi ◽  
Robert G. Endres

AbstractThe transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe wide-ranging behaviors from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell-cell communication and hence aggregation, we analyzed cell-cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cellcell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores.Author SummaryCells are often coupled to each other in cell collectives, such as aggregates during early development, tissues in the developed organism, and tumors in disease. How do cells communicate over macroscopic distances much larger than the typical cell-cell distance to decide how they should behave? Here, we developed a multiscale model of social amoeba, spanning behavior from individuals to thousands of cells. We show that local cell-cell coupling via secreted chemicals may be tuned to a critical value, resulting in emergent long-range communication and heightened sensitivity. Hence, these aggregates are remarkably similar to bacterial biofilms and neuronal networks, all communicating in a pulse-like fashion. Similar organizing principles may also aid our understanding of the remarkable robustness in cancer development.


Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 523-526 ◽  
Author(s):  
K. Inouye ◽  
J. Gross

In ‘slugger’ mutants of Dictyostelium discoideum, aggregates of cells remain for an abnormally long time in the migratory phase under conditions where wild-type aggregates form fruiting bodies. In the present work, we have examined the relationship between the defect in fruiting body formation in these mutants and their ability to form mature stalk cells. We dissociated anterior cells from slugs of the mutants and their parents and tested their ability to form stalk cells when incubated at low density in the presence of (1) the stalk cell morphogen Differentiation Inducing Factor-1 (DIF-1) together with cyclic AMP, or (2) 8-Br-cAMP, which is believed to penetrate cell membrane and activate cAMP- dependent protein kinase (PKA). Most of the mutants were markedly defective in forming stalk cells in response to DIF-1 plus cAMP, confirming a close relationship between fruiting body formation and stalk cell maturation. On the other hand, many of these same mutants formed stalk cells efficiently in response to 8-Br-cAMP. This supports evidence for an essential role of PKA in stalk cell maturation and fruiting body formation. It also indicates that many of the mutants owe their slugger phenotype to defects in functions required for optimal adenylyl cyclase activity.


1996 ◽  
Vol 7 (11) ◽  
pp. 1667-1677 ◽  
Author(s):  
K Redding ◽  
M Seeger ◽  
G S Payne ◽  
R S Fuller

Localization of Kex2 protease (Kex2p) to the yeast trans-Golgi network (TGN) requires a TGN localization signal (TLS) in the Kex2p C-terminal cytosolic tail. Mutation of the TLS accelerates transport of Kex2p to the vacuole by an intracellular (SEC1-independent) pathway. In contrast, inactivation of the clathrin heavy-chain gene CHC1 results in transport of Kex2p and other Golgi membrane proteins to the cell surface. Here, the relationship of the two localization defects was assessed by examining the effects of a temperature-sensitive CHC1 allele on trafficking of wild-type (WT) and TLS mutant forms of Kex2p. Inactivation of clathrin by shifting chc1-ts cells to 37 degrees C caused WT and TLS mutant forms of Kex2p to behave identically. All forms of Kex2p appeared at the plasma membrane within 30-60 min of the temperature shift. TLS mutant forms of Kex2p were stabilized, their half-lives increasing to that of wild-type Kex2p. After inactivation of clathrin heavy chain, vacuolar protease-dependent degradation of all forms of Kex2p was blocked by a sec1 mutation, which is required for secretory vesicle fusion to the plasma membrane, indicating that transport to the cell surface was required for degradation by vacuolar proteolysis. Finally, after clathrin inactivation, all forms of Kex2p were degraded in part by a vacuolar protease-independent pathway. After inactivation of both chc1-ts and sec1-ts, Kex2 was degraded exclusively by this pathway. We conclude that the effects of clathrin inactivation on Kex2p localization are independent of the Kex2p C-terminal cytosolic tail. Although these results neither prove nor rule out a direct interaction between the Kex2 TLS and a clathrin-dependent structure, they do imply that clathrin is required for the intracellular transport of Kex2p TLS mutants to the vacuole.


1988 ◽  
Vol 90 (4) ◽  
pp. 691-700 ◽  
Author(s):  
M.B. Coukell ◽  
A.M. Cameron

When starved wild-type amoebae of Dictyostelium discoideum were washed and incubated in 1 mM-EGTA, their ability to induce soluble cyclic AMP phosphodiesterase (PD) activity in response to either millimolar cyclic AMP or a series of nanomolar cyclic AMP pulses was reduced by 55–75%. Supplementation of EGTA-treated cells with exogenous Ca2+ stimulated PD induction in a dose-dependent fashion (EC50 = 100–200 nM free extracellular Ca2+), and enzyme production was maximal at about 1 microM free Ca2+. Ca2+ depletion also strongly impaired production of the phosphodiesterase inhibitor (PDI). In contrast, other than delaying their appearance by about 1 h, EGTA had little effect on the induction by cyclic AMP pulses of cell surface markers such as contact sites A and membrane-bound PD activity. Similar changes in both the soluble and membrane activities were observed with strain NP368, a mutant that overproduces cyclic GMP when stimulated by cyclic AMP. Thus, Ca2+ depletion does not appear to inhibit PD and PDI production by reducing intracellular cyclic GMP. To determine whether Ca2+ depletion alters signal transduction, two mutants that produce the soluble PD activities constitutively were examined. Suboptimal concentrations of free extracellular Ca2+ were found to inhibit PD production in these cells to the same degree and with the same concentration dependence as low Ca2+ inhibited PD induction by cyclic AMP in wild-type cells. These results suggest that Ca2+ depletion by EGTA probably inhibits PD and PDI production indirectly by perturbing an intracellular Ca2+ pool(s) rather than by altering a surface cyclic AMP-receptor-mediated process.


Sign in / Sign up

Export Citation Format

Share Document