Action of a slowly hydrolysable cyclic AMP analogue on developing cells of Dictyostelium discoideum

1979 ◽  
Vol 35 (1) ◽  
pp. 321-338
Author(s):  
C. Rossier ◽  
G. Gerisch ◽  
D. Malchow

Adenosine 3′,5′-cyclic phosphorothioate (cAMP-S) is a cyclic AMP (cAMP) analogue which is only slowly hydrolysed by phosphodiesterases of Dictyostelium discoideum. The affinity of cAMP-S to cAMP receptors at the cell surface is only one order of magnitude lower than that of cAMP. cAMP-S can replace cAMP as a stimulant with respect to all receptor-mediated responses tested, including chemotaxis and the induction of cAMP pulses. cAMP-S does not affect growth of D. discoideum but it blocks cell aggregation at a uniform concentration of 5 × 10(−7) M in agar plate cultures of strain NC-4 as well as its axenically growing derivative, Ax-2. Another wild-type strain of D. discoideum, v-12, is able to aggregate on agar plates supplemented with 1 mM cAMP-S. The development of Polysphondylium pallidum and P. violaceum is also highly cAMP-S resistant. In Ax-2 both differentiation from the growth phase to the aggregation-competent stage and chemotaxis are cAMP-S sensitive, whereas in v-12 only chemotaxis is inhibited. v-12 can still form streams of cohering cells and fruiting bodies when chemotaxis is inhibited by cAMP-S. Whereas cAMP induces differentiation into stalk cells at concentrations of 10(−3) or 10(−4) M, cAMP-S has the same effect in strain v-12 at the much lower concentration of 10(−6) M.

Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 115-123
Author(s):  
James H Morrissey ◽  
Steven Wheeler ◽  
William F Loomis

ABSTRACT Seventeen independently isolated pigmentless (white) mutations in Dictyostelium discoideum are all recessive and fall into three complementation groups identifying two new whi loci in addition to the previously characterized whiA locus. whiB and whiC map to linkage groups III and IV, respectively. In addition, it was discovered that our laboratory stock of NC4, the wild-type strain from which these mutants were derived, has spontaneously lost the ability to grow on Bacillus subtilis. This new mutation, bsgB500, maps to linkage group VII and is not allelic to bsgA. bsgB500 is the first spontaneously derived mutation in D. discoideum that can be used to select heterozygous diploids, and for the first time allows genetic analysis to be routinely performed on strains derived from an unmutagenized background.


2005 ◽  
Vol 187 (19) ◽  
pp. 6678-6682 ◽  
Author(s):  
Tokiko Yoshimura-Suzuki ◽  
Ikuko Sagami ◽  
Nao Yokota ◽  
Hirofumi Kurokawa ◽  
Toru Shimizu

ABSTRACT Heme-regulated phosphodiesterase from Escherichia coli (DOSEc) catalyzes the hydrolysis of cyclic AMP (cAMP) in vitro and is regulated by the redox state of the bound heme. Changes in the redox state result in alterations in the three-dimensional structure of the enzyme, which is then transmitted to the functional domain to switch catalysis on or off. Because DOSEc was originally cloned from E. coli genomic DNA, it has not been known whether it is actually expressed in wild-type E. coli. In addition, the turnover number of DOSEc using cAMP as a substrate is only 0.15 min−1, which is relatively low for a physiologically relevant enzyme. In the present study, we demonstrated for the first time that the DOSEc gene and protein are expressed in wild-type E. coli, especially under aerobic conditions. We also developed a DOSEc gene knockout strain (Δdos). Interestingly, the knockout of dos caused excess accumulation of intracellular cAMP (26-fold higher than in the wild-type strain) under aerobic conditions, whereas accumulation of cAMP was not observed under anaerobic conditions. We also found differences in cell morphology and growth rate between the mutant cells and the wild-type strain. The changes in the knockout strain were partially complemented by introducing an expression plasmid for dos. Thus, the present study revealed that expression of DOSEc is regulated according to environmental O2 availability at the transcriptional level and that the concentration of cAMP in cells is regulated by DOSEc expression.


2003 ◽  
Vol 69 (6) ◽  
pp. 3244-3250 ◽  
Author(s):  
Daniel Kadouri ◽  
Edouard Jurkevitch ◽  
Yaacov Okon

ABSTRACT When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 61-67
Author(s):  
Elizabeth Smith ◽  
Keith L. Williams

Young slugs of the cellular slime mould Dictyostelium discoideum drop small numbers of individual amoebae (∼ 10/mm) in the slime trail. With increased time of migration, slugs develop trailing tails and leave clumps of cells in their slime trails. Using reciprocal transplants between tips of young and old slugs and between a wild-type strain and an ‘aged'’ mutant it was shown that this age-dependent cell loss is due to changes in the bulk of cells comprising the slug, rather than to changes in the effectiveness of the tip (organizer region). Another property of the slug, the decision to continue migrating or form a fruiting body which is controlled by the tip, was less affected by age. This raises the possibility that cell autonomous properties of the slug are more subject to ageing than is the tip.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 313-321 ◽  
Author(s):  
E.J. Breen ◽  
P.H. Vardy ◽  
K.L. Williams

Time-lapse video recordings of migrating multicellular slugs of Dictyostelium discoideum were subjected to image analysis. A transient ‘collar-like’ structure was identified at the anterior end of the slug. This collar remains stationary in the wild- type strain WS380B; it is observed shortly after the advancing tip contacts the substratum. Stationary collars formed approximately every 12min; they were matched with patterns revealed on the underside of slime trails with FITC-coupled monoclonal antibody MUD50. It is proposed that stationary collars are involved with the forward movement of the slug. The mutant strain HU2421 lacks the MUD50-epitope and forms collars which do not remain stationary but move backwards along the slug to collect at a ‘waist’ region. The slipping-collars observed in the mutant correlated with very slow migration rates. We propose that HU2421 moves slowly because it lacks traction.


1978 ◽  
Vol 24 (5) ◽  
pp. 629-631 ◽  
Author(s):  
La Verne Russell ◽  
Hiroshi Yamazaki

The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.


2005 ◽  
Vol 187 (14) ◽  
pp. 5029-5031 ◽  
Author(s):  
Bongsoo Lee ◽  
Penelope I. Higgs ◽  
David R. Zusman ◽  
Kyungyun Cho

ABSTRACT The espC null mutation caused accelerated aggregation and formation of tiny fruiting bodies surrounded by spores, which were also observed in the espA mutant and in CsgA-overproducing cells in Myxococcus xanthus. In addition, the espC mutant appeared to produce larger amounts of the complementary C-signal than the wild-type strain. These findings suggest that EspC is involved in controlling the timing of fruiting body development in M. xanthus.


1987 ◽  
Vol 33 (8) ◽  
pp. 704-708 ◽  
Author(s):  
Jordi Barbé ◽  
Isidre Gibert ◽  
Ricardo Guerrero

Ultraviolet irradiation and cyclic AMP treatment produce a synergistic effect on the induction of the clel gene (coding for bacteriocin ColE1) in wild-type strains of Escherichia coli. On the other hand, cyclic AMP does not affect the uv-mediated induction of the recA, sfiA, and umuDC genes. Growth in the presence of glucose or glycerol does not affect the factor of amplification of the expression of the clel gene in uv-irradiated cells of the wild-type strain. Although, in cultures not treated with uv, the basal level of clel induction is about twice as high in cells grown with glycerol as in those using glucose as carbon source. In recA mutants neither simultaneous nor separate treatments with either cyclic AMP or uv irradiation induced transcription of the clel gene. Moreover, cyclic AMP induced a slight increase in clel gene expression in uv-irradiated cya strains, but not in the crp mutants. Nevertheless, the pattern of the uv-mediated induction of other SOS genes, such as umuDC, was the same in the cya and crp mutants, as in their parental wild-type strains. Furthermore, the uv-mediated induction of lambda prophage was decreased after either addition of cyclic AMP or growth in cultural conditions where the level of this nucleotide was low.


1993 ◽  
Vol 13 (12) ◽  
pp. 7782-7792 ◽  
Author(s):  
L Zhang ◽  
A C Churchill ◽  
P Kazmierczak ◽  
D H Kim ◽  
N K Van Alfen

Expression of the Vir2 gene of Cryphonectria parasitica is down-regulated in strains of the fungus containing a double-stranded RNA genetic element that reduces fungal virulence (W. A. Powell and N. K. Van Alfen, Mol. Cell. Biol. 7:3688-3693, 1987). We have sequenced the Vir2 gene and characterized its structure; the mRNA contains a short open reading frame whose product has structural similarities to several fungal pheromones. A null mutant was constructed by homologous recombination to determine the function of the Vir2 gene and whether its disruption resulted in any of the altered phenotypes exhibited by many hypovirulent strains, such as reductions in virulence, pigmentation, and sporulation. The Vir2 null mutant (18dm) exhibited a wild-type phenotype with respect to gross colony morphology, growth rate, pigmentation, asexual spore viability, and virulence in apple fruit and chestnut trees. However, numbers of asexual fruiting bodies (pycnidia) and conidia were reduced significantly in comparison with the wild-type strain EP155/2. In sexual crosses of 18dm with a wild-type strain of the opposite mating type, perithecia (sexual fruiting bodies) developed but were barren. Deletion of the Vir2 gene results in a phenotype that mimics that of many double-stranded-RNA-containing hypovirulent strains; i.e., the null mutant exhibits significant reductions in asexual sporulation and pycinidum production as well as impaired sexual crossing ability. To our knowledge, this is the first report of the partial reproduction of a virus-induced phenotype by deletion of a virus-perturbed host gene.


2004 ◽  
Vol 186 (2) ◽  
pp. 580-587 ◽  
Author(s):  
William T. Self ◽  
Adnan Hasona ◽  
K. T. Shanmugam

ABSTRACT On the basis of hyf-lacZ fusion studies, the hyf operon of Escherichia coli, noted for encoding the fourth hydrogenase isoenzyme (HYD4), is not expressed at a significant level in a wild-type strain. However, mutant FhlA proteins (constitutive activators of the hyc-encoded hydrogenase 3 isoenzyme) activated hyf-lacZ. HyfR, an FhlA homolog encoded by the hyfR gene present at the end of the hyf operon, also activated transcription of hyf-lacZ but did so only when hyfR was expressed from a heterologous promoter. The HYD4 isoenzyme did not substitute for HYD3 in H2 production. Optimum expression of hyf-lacZ required the presence of cyclic AMP receptor protein-cyclic AMP complex and anaerobic conditions when HyfR was the activator.


Sign in / Sign up

Export Citation Format

Share Document