The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice

Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2315-2325 ◽  
Author(s):  
E.A. Grove ◽  
S. Tole ◽  
J. Limon ◽  
L. Yip ◽  
C.W. Ragsdale

In the developing vertebrate CNS, members of the Wnt gene family are characteristically expressed at signaling centers that pattern adjacent parts of the neural tube. To identify candidate signaling centers in the telencephalon, we isolated Wnt gene fragments from cDNA derived from embryonic mouse telencephalon. In situ hybridization experiments demonstrate that one of the isolated Wnt genes, Wnt7a, is broadly expressed in the embryonic telencephalon. By contrast, three others, Wnt3a, 5a and a novel mouse Wnt gene, Wnt2b, are expressed only at the medial edge of the telencephalon, defining the hem of the cerebral cortex. The Wnt-rich cortical hem is a transient, neuron-containing, neuroepithelial structure that forms a boundary between the hippocampus and the telencephalic choroid plexus epithelium (CPe) throughout their embryonic development. Indicating a close developmental relationship between the cortical hem and the CPe, Wnt gene expression is upregulated in the cortical hem both before and just as the CPe begins to form, and persists until birth. In addition, although the cortical hem does not show features of differentiated CPe, such as expression of transthyretin mRNA, the CPe and cortical hem are linked by shared expression of members of the Bmp and Msx gene families. In the extra-toesJ (XtJ) mouse mutant, telencephalic CPe fails to develop. We show that Wnt gene expression is deficient at the cortical hem in XtJ/XtJ mice, but that the expression of other telencephalic developmental control genes, including Wnt7a, is maintained. The XtJ mutant carries a deletion in Gli3, a vertebrate homolog of the Drosophila gene cubitus interruptus (ci), which encodes a transcriptional regulator of the Drosophila Wnt gene, wingless. Our observations indicate that Gli3 participates in Wnt gene regulation in the vertebrate telencephalon, and suggest that the loss of telencephalic choroid plexus in XtJ mice is due to defects in the cortical hem that include Wnt gene misregulation.

2000 ◽  
Vol 176 (3) ◽  
pp. 236-242 ◽  
Author(s):  
Sharon L. Eastwood ◽  
Nigel J. Cairns ◽  
Paul J. Harrison

BackgroundDecreased expression of proteins such as synaptophysin in the hippocampus and prefrontal cortex in schizophrenia is suggestive of synaptic pathology. However, the overall profile of changes is unclear.AimsTo investigate synaptophysin gene expression in the cerebral cortex in schizophrenia.MethodThe dorsolateral prefrontal (Brodmann area [BA] 9/46), anterior cingulate (BA 24), superior temporal (BA 22) and occipital (BA 17) cortex were studied in two series of brains, totalling 19 cases and 19 controls. Synaptophysin was measured by immunoautoradiography and immunoblotting. Synaptophysin messenger RNA (m RNA) was measured using in situ hybridisation.ResultsSynaptophysin was unchanged in schizophrenia, except for a reduction in BA 17 of one brain series. Synaptophysin mRNA was decreased in BA 17, and in BA 22 in the women with schizophrenia. No alterations were seen in BA 9/46.ConclusionsSynaptophysin expression is decreased in some cortical areas in schizophrenia. The alterations affect the mRNA more than the protein, and have an unexpected regional distribution. The characteristics of the implied synaptic pathology remain to be determined.


2006 ◽  
Vol 37 (2) ◽  
pp. 301-316 ◽  
Author(s):  
Andreas Petri ◽  
Jonas Ahnfelt-Rønne ◽  
Klaus Stensgaard Frederiksen ◽  
David George Edwards ◽  
Dennis Madsen ◽  
...  

To understand the molecular mechanisms regulating pancreatic endocrine development and function, pancreatic gene expression was compared between Ngn3-deficient mice and littermate controls on embryonic days 13 and 15. Microarray analysis identified 504 genes with significant differences in expression. Fifty-two of these showed at least twofold reduction in Ngn3 knockouts compared to controls. Many of them were previously described to be involved in endocrine development and function. Among the genes not previously characterized were Rhomboid veinlet-like 4, genes involved in tetrahydrobiopterin biosynthesis and the Iroquois-type homeobox gene Irx1, the latter was selected for further investigation. In situ hybridisation demonstrated that two Iroquois genes, Irx1 and Irx2, were expressed in pancreatic endoderm of wild-type, but not Ngn3 mutant embryos. Furthermore, ectopic Ngn3 induced prominent Irx2 expression in chicken endoderm. Co-labelling established that Irx1 and Irx2 mRNA is located to glucagon-, but not insulin- or somatostatin-producing cells in mice and chicken. These data suggest that Irx1 and Irx2 serve an evolutionary conserved role in the regulation of α-cell-specific gene expression.


2006 ◽  
Vol 76 (6) ◽  
pp. 990-995 ◽  
Author(s):  
Xuguang Nie

Abstract Objective: To examine the expression pattern of the Fgf and Msx genes in cranial base development. Materials and Methods: To detect the expression of these genes, antisense riboprobes were synthesized by in vitro transcription. Radioactive in situ hybridization was performed on parasagittal sections of embryonic mouse heads. Results: Msx2 was observed in the underlying perichondrium at restricted stages. Msx1 was not observed in cranial base development. Fgf1 was localized in osteogenic cells from the time of ossification; Fgf10 was highly expressed in the occipital-vertebral joint during E13 to E14; Fgf2, Fgf7, and Fgf18 were localized in the perichondria; Fgf12 was transitorily expressed at early chondrocranium; Fgf9 was seen in the hypertrophic chondrocytes. Conclusions: The Fgf and Msx gene expression in the cranial base was different from that of other skeletons.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Hoa Ho ◽  
Annarita Patrizi

AbstractChoroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.


2021 ◽  
Vol 4 (1) ◽  
pp. 20
Author(s):  
Mujeeb Shittu ◽  
Tessa Steenwinkel ◽  
William Dion ◽  
Nathan Ostlund ◽  
Komal Raja ◽  
...  

RNA in situ hybridization (ISH) is used to visualize spatio-temporal gene expression patterns with broad applications in biology and biomedicine. Here we provide a protocol for mRNA ISH in developing pupal wings and abdomens for model and non-model Drosophila species. We describe best practices in pupal staging, tissue preparation, probe design and synthesis, imaging of gene expression patterns, and image-editing techniques. This protocol has been successfully used to investigate the roles of genes underlying the evolution of novel color patterns in non-model Drosophila species.


Sign in / Sign up

Export Citation Format

Share Document