Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution

Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2701-2710 ◽  
Author(s):  
S. Glardon ◽  
L.Z. Holland ◽  
W.J. Gehring ◽  
N.D. Holland

Pax-6 genes have been identified from a broad range of invertebrate and vertebrate animals and shown to be always involved in early eye development. Therefore, it has been proposed that the various types of eyes evolved from a single eye prototype, by a Pax-6-dependent mechanism. Here we describe the characterization of a cephalochordate Pax-6 gene. The single amphioxus Pax-6 gene (AmphiPax-6) can produce several alternatively spliced transcripts, resulting in proteins with markedly different amino and carboxy termini. The amphioxus Pax-6 proteins are 92% identical to mammalian Pax-6 proteins in the paired domain and 100% identical in the homeodomain. Expression of AmphiPax-6 in the anterior epidermis of embryos may be related to development of an olfactory epithelium. Expression is also detectable in Hatschek's left diverticulum as it forms the preoral ciliated pit, part of which gives rise to the homolog of the vertebrate anterior pituitary. A zone of expression in the anterior neural plate of early embryos is carried into the cerebral vesicle (a probable diencephalic homolog) during neurulation. This zone includes cells that will differentiate into the lamellar body, a presumed homolog of the vertebrate pineal eye. In neurulae, AmphiPax-6 is also expressed in ventral cells at the anterior tip of the nerve cord; these cells are precursors of the photoreceptive neurons of the frontal eye, the presumed homolog of the vertebrate paired eyes. However, AmphiPax-6 expression was not detected in two additional types of photoreceptors, the Joseph cells or the organs of Hesse, which are evidently relatively recent adaptations (ganglionic photoreceptors) and appear to be rare exceptions to the general rule that animal photoreceptors develop from a genetic program triggered by Pax-6.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kamoltip Laohakieat ◽  
Siriwan Isasawin ◽  
Sujinda Thanaphum

Abstract Sex determination in tephritid fruit flies involves a signaling cascade of alternatively spliced genes. The Transformer (TRA) and Transformer-2 (TRA-2) complex establishes an autoregulatory loop switching sex-specific splicing of tra pre-mRNA in females. The TRA/TRA-2 complex also regulates the sex-specific splicing of downstream effector genes, doublesex (dsx) and fruitless (fru). In Ceratitis capitata, a Maleness-on the-Y (MoY) gene modulates sex-specifically spliced Cctra pre-mRNA and results in the breakdown of the Cctra autoregulatory loop in males. In this study, the tra-2 and fru genes were characterised in two key pests, Bactrocera dorsalis and B. correcta. The tra-2 genes showed high degrees of conservation among tephritids. The complex gene organisation for each of Bdfru and Bcfru were identified. There are sex-specific and non sex-specific transcripts generated by alternative promoters as found in Drosophila melanogaster and other insects. RNAi knockdown of Bdtra transcripts showed that BdTRA controls the sex-specific splicing of Bddsx and Bdfru pre-mRNAs. Developmental expression analysis shows that multiple splice variants of Bdtra and Bctra RNAs are present before and during cellular blastoderm formation and that the mature sex-specific variants become fixed later in embryogenesis. Furthermore, the BddsxM splice variants are found in early embryos at the beginning of gastulation, but BdfruM does not appear until the larval stage. We proposed that the zygotic tra loop is initiated in both female and male embryos before becoming automatised or abolished by MoY, respectively.



Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 17-27
Author(s):  
V. Garzino ◽  
H. Berenger ◽  
J. Pradel

This paper reports the characterization of two immunologically related proteins that may be involved in cell adhesion during Drosophila development. These proteins, laminin chain A and a 240K component, share the epitope recognized by monoclonal antibody RD3 (Mab RD3). The two antigens show different developmental expression profiles. Laminin is detected only from 6 to 8 h of development onwards; its concentration increases during embryogenesis to reach steady-state value in larvae, pupae and adult flies. By contrast, the 240K antigen, not found in oocytes, is present before blastoderm stages; its concentration increases during gastrulation, decreases at the end of organogenesis and the antigen is no longer detected in third instar larvae. Light and electron microscope immunolocalization in imaginal discs indicates that laminin is distributed apically in the lumen and basally in the basal membrane that surrounds the nonevaginated disc. During morphogenesis laminin is detected at the basal side of the evaginating part of the disc epithelium. Immunolocalization on paraffin sections of early embryos suggests that the 240K antigen is related to (1) cell formation and polarization in association with cytoskeleton components, (2) establishment of cell-extracellular substratum interactions during the blastoderm cell sheet organization and (3) basement membrane deposition during embryonic germ cell layer segregation. This 240K protein is poorly or not glycosylated, is resistant to chondroitinase ABC and collagenase and appears therefore as a new extracellular component that might be specifically involved in early processes of morphogenesis.



2010 ◽  
Vol 3 (1) ◽  
Author(s):  
Christian Colin ◽  
Flávia S Tobaruella ◽  
Ricardo G Correa ◽  
Mari C Sogayar ◽  
Marcos A Demasi


2021 ◽  
Author(s):  
Fatemeh Khakdan ◽  
Zahra Shirazi ◽  
Mojtaba Ranjbar

Abstract Methyl chavicol and methyl eugenol are important phenylpropanoid compounds previously purified from basil. These compounds are significantly enhanced by the water deficit stress-dependent mechanism. Here, for the first time, pObCVOMT and pObEOMT promoters were extracted by the genome walking method. They were then cloned into the upstream of the β-glucuronidase (GUS) reporter gene to identify the pattern of GUS water deficit stress-specific expression. Histochemical GUS assays showed in transgenic tobacco lines bearing the GUS gene driven by pObCVOMT and pObEOMT promoters, GUS was strongly expressed under water deficit stress. qRT-PCR analysis of pObCVOMT and pObEOMT transgenic plants confirmed the histochemical assays, indicating that the GUS expression is also significantly induced and up-regulated by increasing density of water deficit stress. This indicates these promoters are able to drive inducible expression. The cis-acting elements analysis showed that the pObCVOMT and pObEOMT promoters contained dehydration or water deficit-related transcriptional control elements.



2003 ◽  
Vol 278 (30) ◽  
pp. 27513-27519 ◽  
Author(s):  
Bryan J. Katafiasz ◽  
Marvin T. Nieman ◽  
Margaret J. Wheelock ◽  
Keith R. Johnson




Sign in / Sign up

Export Citation Format

Share Document