Expression of laminin and of a laminin-related antigen during early development of Drosophila melanogaster

Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 17-27
Author(s):  
V. Garzino ◽  
H. Berenger ◽  
J. Pradel

This paper reports the characterization of two immunologically related proteins that may be involved in cell adhesion during Drosophila development. These proteins, laminin chain A and a 240K component, share the epitope recognized by monoclonal antibody RD3 (Mab RD3). The two antigens show different developmental expression profiles. Laminin is detected only from 6 to 8 h of development onwards; its concentration increases during embryogenesis to reach steady-state value in larvae, pupae and adult flies. By contrast, the 240K antigen, not found in oocytes, is present before blastoderm stages; its concentration increases during gastrulation, decreases at the end of organogenesis and the antigen is no longer detected in third instar larvae. Light and electron microscope immunolocalization in imaginal discs indicates that laminin is distributed apically in the lumen and basally in the basal membrane that surrounds the nonevaginated disc. During morphogenesis laminin is detected at the basal side of the evaginating part of the disc epithelium. Immunolocalization on paraffin sections of early embryos suggests that the 240K antigen is related to (1) cell formation and polarization in association with cytoskeleton components, (2) establishment of cell-extracellular substratum interactions during the blastoderm cell sheet organization and (3) basement membrane deposition during embryonic germ cell layer segregation. This 240K protein is poorly or not glycosylated, is resistant to chondroitinase ABC and collagenase and appears therefore as a new extracellular component that might be specifically involved in early processes of morphogenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kamoltip Laohakieat ◽  
Siriwan Isasawin ◽  
Sujinda Thanaphum

Abstract Sex determination in tephritid fruit flies involves a signaling cascade of alternatively spliced genes. The Transformer (TRA) and Transformer-2 (TRA-2) complex establishes an autoregulatory loop switching sex-specific splicing of tra pre-mRNA in females. The TRA/TRA-2 complex also regulates the sex-specific splicing of downstream effector genes, doublesex (dsx) and fruitless (fru). In Ceratitis capitata, a Maleness-on the-Y (MoY) gene modulates sex-specifically spliced Cctra pre-mRNA and results in the breakdown of the Cctra autoregulatory loop in males. In this study, the tra-2 and fru genes were characterised in two key pests, Bactrocera dorsalis and B. correcta. The tra-2 genes showed high degrees of conservation among tephritids. The complex gene organisation for each of Bdfru and Bcfru were identified. There are sex-specific and non sex-specific transcripts generated by alternative promoters as found in Drosophila melanogaster and other insects. RNAi knockdown of Bdtra transcripts showed that BdTRA controls the sex-specific splicing of Bddsx and Bdfru pre-mRNAs. Developmental expression analysis shows that multiple splice variants of Bdtra and Bctra RNAs are present before and during cellular blastoderm formation and that the mature sex-specific variants become fixed later in embryogenesis. Furthermore, the BddsxM splice variants are found in early embryos at the beginning of gastulation, but BdfruM does not appear until the larval stage. We proposed that the zygotic tra loop is initiated in both female and male embryos before becoming automatised or abolished by MoY, respectively.



Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2701-2710 ◽  
Author(s):  
S. Glardon ◽  
L.Z. Holland ◽  
W.J. Gehring ◽  
N.D. Holland

Pax-6 genes have been identified from a broad range of invertebrate and vertebrate animals and shown to be always involved in early eye development. Therefore, it has been proposed that the various types of eyes evolved from a single eye prototype, by a Pax-6-dependent mechanism. Here we describe the characterization of a cephalochordate Pax-6 gene. The single amphioxus Pax-6 gene (AmphiPax-6) can produce several alternatively spliced transcripts, resulting in proteins with markedly different amino and carboxy termini. The amphioxus Pax-6 proteins are 92% identical to mammalian Pax-6 proteins in the paired domain and 100% identical in the homeodomain. Expression of AmphiPax-6 in the anterior epidermis of embryos may be related to development of an olfactory epithelium. Expression is also detectable in Hatschek's left diverticulum as it forms the preoral ciliated pit, part of which gives rise to the homolog of the vertebrate anterior pituitary. A zone of expression in the anterior neural plate of early embryos is carried into the cerebral vesicle (a probable diencephalic homolog) during neurulation. This zone includes cells that will differentiate into the lamellar body, a presumed homolog of the vertebrate pineal eye. In neurulae, AmphiPax-6 is also expressed in ventral cells at the anterior tip of the nerve cord; these cells are precursors of the photoreceptive neurons of the frontal eye, the presumed homolog of the vertebrate paired eyes. However, AmphiPax-6 expression was not detected in two additional types of photoreceptors, the Joseph cells or the organs of Hesse, which are evidently relatively recent adaptations (ganglionic photoreceptors) and appear to be rare exceptions to the general rule that animal photoreceptors develop from a genetic program triggered by Pax-6.



Biomaterials ◽  
2014 ◽  
Vol 35 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Tadashi Sasagawa ◽  
Tatsuya Shimizu ◽  
Masayuki Yamato ◽  
Teruo Okano


1996 ◽  
Vol 96 (4) ◽  
pp. 585-592 ◽  
Author(s):  
Randal W. Giroux ◽  
K. Peter Pauls


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.



Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 439
Author(s):  
Avinash Chandra Rai ◽  
Eyal Halon ◽  
Hanita Zemach ◽  
Tali Zviran ◽  
Isaac Sisai ◽  
...  

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells—a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianyu Meng ◽  
Xingjiang Chen ◽  
Changyu Zhang

Abstract Myzus persicae is a serious and widespread agricultural pest, against which, imidacloprid remains an effective control measure. However, recent reports indicate that this aphid has evolved and developed resistance to imidacloprid. This study aimed to elucidate the underlying mechanisms and genetic basis of this resistance by conducting comparative transcriptomics studies on both imidacloprid-resistant (IR) and imidacloprid-susceptible (IS) M. persicae. The comparative analysis identified 252 differentially expressed genes (DEGs) among the IR and IS M. persicae transcriptomes. These candidate genes included 160 and 92 genes that were down- and up-regulated, respectively, in the imidacloprid-resistant strain. Using functional classification in the GO and KEGG databases, 187 DEGs were assigned to 303 functional subcategories and 100 DEGs were classified into 45 pathway groups. Moreover, several genes were associated with known insecticide targets, cuticle, metabolic processes, and oxidative phosphorylation. Quantitative real-time PCR of 10 DEGs confirmed the trends observed in the RNA sequencing expression profiles. These findings provide a valuable basis for further investigation into the complicated mechanisms of imidacloprid resistance in M. persicae.



2018 ◽  
Vol 20 (1) ◽  
pp. 93
Author(s):  
Jin Wang ◽  
Feiyi Huang ◽  
Xiong You ◽  
Xilin Hou

In plants, heptahelical proteins (HHPs) have been shown to respond to a variety of abiotic stresses, including cold stress. Up to the present, the regulation mechanism of HHP5 under low temperature stress remains unclear. In this study, BcHHP5 was isolated from Pak-choi (Brassica rapa ssp. chinensis cv. Suzhouqing). Sequence analysis and phylogenetic analysis indicated that BcHHP5 in Pak-choi is similar to AtHHP5 in Arabidopsis thaliana. Structure analysis showed that the structure of the BcHHP5 protein is relatively stable and highly conservative. Subcellular localization indicated that BcHHP5 was localized on the cell membrane and nuclear membrane. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcHHP5 was induced to express by cold and other abiotic stresses. In Pak-choi, BcHHP5-silenced assay, inhibiting the action of endogenous BcHHP5, indicated that BcHHP5-silenced might have a negative effect on cold tolerance, which was further confirmed. All of these results indicate that BcHHP5 might play a role in abiotic response. This work can serve as a reference for the functional analysis of other cold-related proteins from Pak-choi in the future.





Endocrinology ◽  
1995 ◽  
Vol 136 (4) ◽  
pp. 1441-1449 ◽  
Author(s):  
S Takahashi ◽  
S V Reddy ◽  
M Dallas ◽  
R Devlin ◽  
J Y Chou ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document