Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 621-634 ◽  
Author(s):  
W. Wang ◽  
T. Van De Water ◽  
T. Lufkin

The Hmx homeobox gene family is of ancient origin, being present in species as diverse as Drosophila, sea urchin and mammals. The three members of the murine Hmx family, designated Hmx1, Hmx2 and Hmx3, are expressed in tissues that suggest a common functional role in sensory organ development and pregnancy. Hmx3 is one of the earliest markers for vestibular inner ear development during embryogenesis, and is also upregulated in the myometrium of the uterus during pregnancy. Targeted disruption of the Hmx3 gene results in mice with abnormal circling behavior and severe vestibular defects owing to a depletion of sensory cells in the saccule and utricle, and a complete loss of the horizontal semicircular canal crista, as well as a fusion of the utricle and saccule endolymphatic spaces into a common utriculosaccular cavity. Both the sensory and secretory epithelium of the cochlear duct appear normal in the Hmx3 null animals. The majority of Hmx3 null females have a reproductive defect. Hmx3 null females can be fertilized and their embryos undergo normal preimplantation development, but the embryos fail to implant successfully in the Hmx3 null uterus and subsequently die. Transfer of preimplantation embryos from mutant Hmx3 uterine horns to wild-type pseudopregnant females results in successful pregnancy, indicating a failure of the Hmx3 null uterus to support normal post-implantation pregnancy. Molecular analysis revealed the perturbation of Hmx, Wnt and LIF gene expression in the Hmx3 null uterus. Interestingly, expression of both Hmx1 and Hmx2 is downregulated in the Hmx3 null uterus, suggesting a hierarchical relationship among the three Hmx genes during pregnancy.

Development ◽  
1998 ◽  
Vol 125 (1) ◽  
pp. 33-39 ◽  
Author(s):  
T. Hadrys ◽  
T. Braun ◽  
S. Rinkwitz-Brandt ◽  
H.H. Arnold ◽  
E. Bober

The inner ear develops from the otic vesicle, a one-cell-thick epithelium, which eventually transforms into highly complex structures including the sensory organs for balance (vestibulum) and hearing (cochlea). Several mouse inner ear mutations with hearing and balance defects have been described but for most the underlying genes have not been identified, for example, the genes controlling the development of the vestibular organs. Here, we report the inactivation of the homeobox gene, Nkx5-1, by homologous recombination in mice. This gene is expressed in vestibular structures throughout inner ear development. Mice carrying the Nkx5-1 null mutation exhibit behavioural abnormalities that resemble the typical hyperactivity and circling movements of the shaker/waltzer type mutants. The balance defect correlates with severe malformations of the vestibular organ in Nkx5-1(−/−) mutants, which fail to develop the semicircular canals. Nkx5-1 is the first ear-specific molecule identified to play a crucial role in the formation of the mammalian vestibular system.


Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 5017-5029 ◽  
Author(s):  
Weidong Wang ◽  
Edwin K. Chan ◽  
Shira Baron ◽  
Thomas Van De Water ◽  
Thomas Lufkin

Development of the vertebrate inner ear is characterized by a series of genetically programmed events involving induction of surface ectoderm, preliminary morphogenesis, specification and commitment of sensory, nonsensory and neuronal cells, as well as outgrowth and restructuring of the otocyst to form a complex labyrinth. Hmx2, a member of the Hmx homeobox gene family, is coexpressed with Hmx3 in the dorsolateral otic epithelium. Targeted disruption of Hmx2 in mice demonstrates the temporal and spatial involvement of Hmx2 in the embryonic transition of the dorsal portion (pars superior) of the otocyst to a fully developed vestibular system. In Hmx2 null embryos, a perturbation in cell fate determination in the lateral aspect of the otic epithelium results in reduced cell proliferation in epithelial cells, which includes the vestibular sensory patches and semicircular duct fusion plates, as well as in the adjacent mesenchyme. Consequently, enlargement and morphogenesis of the pars superior of the otocyst to form a complex labyrinth of cavities and ducts is blocked, as indicated by the lack of any distinguishable semicircular ducts, persistence of the primordial vestibular diverticula, significant loss in the three cristae and the macula utriculus, and a fused utriculosaccular chamber. The developmental regulators Bmp4, Dlx5 and Pax2 all play a critical role in inner ear ontogeny, and the expression of each of these genes is affected in the Hmx2 null otocyst suggesting a complex regulatory role for Hmx2 in this genetic cascade. Both Hmx2 and Hmx3 transcripts are coexpressed in the developing central nervous system including the neural tube and hypothalamus. A lack of defects in the CNS, coupled with the fact that not all of the Hmx2-positive regions in developing inner ear are impaired in the Hmx2 null mice, suggest that Hmx2 and Hmx3 have both unique and overlapping functions during embryogenesis.


2013 ◽  
Vol 35 (10) ◽  
pp. 1198-1208
Author(s):  
Zhi-Qiang CHEN ◽  
Xin-Huan HAN ◽  
Qin-Jun WEI ◽  
Guang-Qian XING ◽  
Xin CAO

2021 ◽  
Vol 22 (12) ◽  
pp. 6497
Author(s):  
Anna Ghilardi ◽  
Alberto Diana ◽  
Renato Bacchetta ◽  
Nadia Santo ◽  
Miriam Ascagni ◽  
...  

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


2008 ◽  
Vol 200 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S Schmidt ◽  
A Hommel ◽  
V Gawlik ◽  
R Augustin ◽  
N Junicke ◽  
...  

Deletion of glucose transporter geneSlc2a3(GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo.Slc2a3−/−morulae and blastocysts developed normally, implantedin vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6.0. At day 6.5, apoptosis was detected in the ectodermal cells ofSlc2a3−/−embryos resulting in severe disorganization and growth retardation at day 7.5 and complete loss of embryos at day 12.5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7.5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.


2009 ◽  
Vol 328 (2) ◽  
pp. 328-341 ◽  
Author(s):  
Garrett A. Soukup ◽  
Bernd Fritzsch ◽  
Marsha L. Pierce ◽  
Michael D. Weston ◽  
Israt Jahan ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 301
Author(s):  
Kathrin Malfeld ◽  
Nina Armbrecht ◽  
Holger A. Volk ◽  
Thomas Lenarz ◽  
Verena Scheper

In recent years sensorineural hearing loss was found to affect not exclusively, nor at first, the sensory cells of the inner ear. The sensory cells’ synapses and subsequent neurites are initially damaged. Auditory synaptopathies also play an important role in cochlear implant (CI) care, as they can lead to a loss of physiological hearing in patients with residual hearing. These auditory synaptopathies and in general the cascades of hearing pathologies have been in the focus of research in recent years with the aim to develop more targeted and individually tailored therapeutics. In the current study, a method to examine implanted inner ears of guinea pigs was developed to examine the synapse level. For this purpose, the cochlea is made transparent and scanned with the implant in situ using confocal laser scanning microscopy. Three different preparation methods were compared to enable both an overview image of the cochlea for assessing the CI position and images of the synapses on the same specimen. The best results were achieved by dissection of the bony capsule of the cochlea.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Chrysan J Mohammed ◽  
Fatimah K Khalaf ◽  
Prabhatchandra Dube ◽  
Tyler J Reid ◽  
Jacob A Connolly ◽  
...  

Background: Paraoxonase 3 (Pon3), is one of the three isoforms of the paraoxonase gene family. While Pon1 and Pon2 are widely studied, there is a paucity of knowledge regarding Pon3. Pon3 is synthesized in the liver and can circulate bound to high-density lipoproteins. There is significant expression in the kidney also. Pon3 has the ability to metabolize eicosanoids, which can act as signaling molecules and have known roles in the pathophysiology of some renal diseases. Decreased Pon activity is associated with elevated levels of eicosanoid metabolites and adverse clinical outcomes. We tested the hypothesis that targeted disruption of Pon3 results in elevated levels of pro-inflammatory eicosanoids and progression of renal injury. Methods/ Results: Ten week old male Dahl salt-sensitive (SS rats) and Pon3 mutant rats (SS Pon3 KO) were maintained on 8% high salt diet for eight weeks, to initiate salt-sensitive hypertensive renal disease. Previously we observed that SS Pon3 KO rats on eight weeks high salt diet demonstrated significantly increased phenotypic renal injury and mortality. In the current study, we noted that SS Pon3 KO had significantly decreased (p<0.05) glomerular filtration rate compared to SS wild type. Blood pressure (radiotelemetry) as well as plasma angiotensin and aldosterone (LC-MS/MS) were not different between the two groups after high salt diet. We used targeted lipidomic profiling to determine eicosanoid content in renal cortex from SS Pon3 KO and SS wild type rats at the end of eight weeks of high salt diet. We found that hydroxyl fatty acids 5-HEPE and 5-HETE (5-lipoxygenase dependent arachidonic acid metabolites) were significantly (p<0.05) elevated in the renal cortex of SS Pon3 KO compared to SS wild type rats. In addition to being mediators of inflammation, these metabolites are associated with renal cell injury and death. Furthermore, prostaglandin 6-keto-PGF 1α , which has known links to renal inflammation, was significantly (p<0.05) increased in renal cortex of SS- Pon3 KO compared to SS wild type rats. Conclusion: These findings suggest that targeted deletion of Pon3 increases pro-inflammatory eicosanoids (5-HETE and 5-HEPE) and prostaglandins (6-keto-PGF 1α ), as well as increases renal damage independent of blood pressure.


Sign in / Sign up

Export Citation Format

Share Document