Control of phyllotaxy in maize by the abphyl1 gene

Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 315-323 ◽  
Author(s):  
D. Jackson ◽  
S. Hake

Organogenesis in plants occurs at the shoot apical meristem, a group of indeterminate stem cells that are organized during embryogenesis. Regulated initiation of leaves or flowers from the shoot meristem gives rise to the familiar geometric patterns observed throughout the plant kingdom. The mechanism by which these patterns, termed phyllotaxies, are generated, remains unclear. Maize plants initiate leaves singly, alternating from one side to the other in a regular pattern. Here we describe a recessive maize mutant, abphyl1, that initiates leaves in opposite pairs, in a pattern termed decussate phyllotaxy. The decussate shoot meristems are larger than normal throughout development, though the general structure and organization of the meristem is not altered. abph1 mutants are first distinguished during embryogenesis, prior to true leaf initiation, by a larger shoot meristem and coincident larger expression domain of the homeobox gene knotted1. Therefore, the abph1 gene regulates morphogenesis in the embryo, and plays a role in determining the phyllotaxy of the shoot.

2020 ◽  
Author(s):  
Sharma Nidhi ◽  
Liu Tie

AbstractIn Arabidopsis, the genes SHOOT MERISTEMLESS (STM) and CLAVATA3 (CLV3) antagonistically regulate shoot meristem development. STM is essential for both development and maintenance of the meristem, as stm mutants fail to develop a shoot meristem during embryogenesis. CLV3, on the other hand, negatively regulates meristem proliferation, and clv3 mutants possess an enlarged shoot meristem. Genetic interaction studies revealed that stm and clv3 dominantly suppress each other’s phenotypes. STM works in conjunction with its closely related homologue KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6) to promote meristem development and organ separation, as stm knat6 double mutants fail to form a meristem and produce a fused cotyledon. In this study, we show that clv3 fails to promote post-embryonic meristem formation in stm-1 background if we also remove KNAT6. stm-1 knat6 clv3 triple mutants result in early meristem termination and produce fused cotyledons similar to stm knat6 double mutant. Notably, the stm-1 knat6 and stm-1 knat6 clv3 alleles lack tissue in the presumed region of SAM. stm knat6 clv3 also showed reduced inflorescence size and shoot apex size as compared to clv3 single or stm clv3 double mutants. In contrast to previously published data, these data suggest that stm is epistatic to clv3 in postembryonic meristem development.HighlightSTM and KNAT6 genes determine post-embryonic meristem formation and activity in Arabidopsis. clv3 mutation is unable to rescue the stm knat6 meristemless phenotype.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3629-3636 ◽  
Author(s):  
N. Satoh ◽  
S.K. Hong ◽  
A. Nishimura ◽  
M. Matsuoka ◽  
H. Kitano ◽  
...  

The regulatory mechanism of shoot apical meristem (SAM) initiation is an important subject in developmental plant biology. We characterized nine recessive mutations derived from four independent loci (SHL1-SHL4) causing the deletion of the SAM. Radicles were produced in these mutant embryos. Concomitant with the loss of SAM, two embryo-specific organs, coleoptile and epiblast, were lost, but the scutellum was formed normally. Therefore, differentiation of radicle and scutellum is regulated independently of SAM, but that of coleoptile and epiblast may depend on SAM. Regeneration experiments using adventitious shoots from the scutellum-derived calli showed that no adventitious shoots were regenerated in any shl mutant. However, small adventitious leaves were observed in both mutant and wild-type calli, but they soon became necrotic and showed no extensive growth. Thus, leaf primordia can initiate in the absence of SAM, but their extensive growth requires the SAM. An in situ hybridization experiment using a rice homeobox gene, OSH1, as a probe revealed that shl1 and shl2 modified the expression domain of OSH1, but normal expression of OSH1 was observed in shl3 and shl4 embryos. Accordingly, SHL1 and SHL2 function upstream of OSH1, and SHL3 and SHL4 downstream or independently of OSH1. These shl mutants are useful for elucidating the genetic program driving SAM initiation and for unraveling the interrelationships among various organs in grass embryos.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3045-3054 ◽  
Author(s):  
R.A. Kerstetter ◽  
D. Laudencia-Chingcuanco ◽  
L.G. Smith ◽  
S. Hake

The product of the maize homeobox gene, knotted1 (kn1), localizes to the nuclei of cells in shoot meristems, but is absent from portions of the meristem where leaf primordia or floral organs initiate. Recessive mutant alleles of kn1 were obtained by screening for loss of the dominant leaf phenotype in maize. Mutant kn1 alleles carrying nonsense, splicing and frame shift mutations cause severe inflorescence and floral defects. Mutant tassels produce fewer branches and spikelets. Ears are often absent, and when present, are small with few spikelets. In addition, extra carpels form in female florets and ovule tissue proliferates abnormally. Less frequently, extra leaves form in the axils of vegetative leaves. These mutations reveal a role for kn1 in meristem maintenance, particularly as it affects branching and lateral organ formation.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 405-413 ◽  
Author(s):  
D. Jackson ◽  
B. Veit ◽  
S. Hake

In this paper we describe the expression patterns of a family of homeobox genes in maize and their relationship to organogenic domains in the vegetative shoot apical meristem. These genes are related by sequence to KNOTTED1, a gene characterized by dominant neomorphic mutations which perturb specific aspects of maize leaf development. Four members of this gene family are expressed in shoot meristems and the developing stem, but not in determinate lateral organs such as leaves or floral organs. The genes show distinct expression patterns in the vegetative shoot apical meristem that together predict the site of leaf initiation and the basal limit of the vegetative ‘phytomer’ or segmentation unit of the shoot. These genes are also expressed in the inflorescence and floral meristems, where their patterns of expression are more similar, and they are not expressed in root apical meristems. These findings are discussed in relation to other studies of shoot apical meristem organization as well as possible commonality of homeobox gene function in the animal and plant kingdoms.


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3161-3172 ◽  
Author(s):  
E. Vollbrecht ◽  
L. Reiser ◽  
S. Hake

The knotted1 (kn1) gene of maize is expressed in meristems and is absent from leaves, including the site of leaf initiation within the meristem. Recessive mutations of kn1 have been described that limit the capacity to make branches and result in extra carpels. Dominant mutations suggest that kn1 function plays a role in maintaining cells in an undifferentiated state. We took advantage of a Ds-induced dominant allele in order to screen for additional recessive alleles resulting from mobilization of the Ds element. Analysis of one such allele revealed a novel embryonic shoot phenotype in which the shoot initiated zero to few organs after the cotyledon was made, resulting in plants that arrested as seedlings. We refer to this phenotype as a limited shoot. The limited shoot phenotype reflected loss of kn1 function, but its penetrance was background dependent. We examined meristem size and found that plants lacking kn1 function had shorter meristems than non-mutant siblings. Furthermore, meristems of restrictive inbreds were significantly shorter than meristems of permissive inbreds, implying a correlation between meristem height and kn1 gene function in the embryo. Analysis of limited shoot plants during embryogenesis indicated a role for kn1 in shoot meristem maintenance. We discuss a model for kn1 in maintenance of the morphogenetic zone of the shoot apical meristem.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1839-1849 ◽  
Author(s):  
D. Nardelli-Haefliger ◽  
A.E. Bruce ◽  
M. Shankland

The homeobox gene Lox2, a member of the HOM/Hox gene class, is expressed in a restricted domain along the anteroposterior (A-P) body axis of the leech Helobdella. The segmental tissues of the leech embryo arise from the parallel merger of five distinct and bilaterally paired cell lineages generated by embryonic stem cells or teloblasts. Injection of cell lineage tracers coupled with anti-LOX2 immunochemistry reveals that all five teloblast lineages generate central nervous system neurons that express the LOX2 protein, and that each lineage expresses LOX2 within a similar domain of body segments. Some lineally identified neurons display anti-LOX2 immunoreactivity over the entire expression domain, but the OM7 neuron has a distinctively high level of LOX2 expression, which is restricted to the seventh midbody ganglion. To ascertain the role of positional information in the axial patterning of LOX2 expression, we performed focal cell ablations that displaced one or another of the teloblast lineages out of segmental register with the other axial tissues. Such displacements brought about a corresponding shift in the LOX2 expression of the perturbed lineage, and had little or no effect on the LOX2 expression of the other, unperturbed lineages. This result indicates that the axial domain of LOX2 expression is not specified by positional cues acting coordinately across the various teloblast lineages, nor would it seem that the expression domain is imprinted from one lineage to the others. Rather, the different teloblast lineages acquire their axial patterns independently, and secondarily bring these patterns into alignment along the A-P axis through a process of morphogenetic assembly.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Benoît Landrein ◽  
Annamaria Kiss ◽  
Massimiliano Sassi ◽  
Aurélie Chauvet ◽  
Pradeep Das ◽  
...  

The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 335-346
Author(s):  
Namiko Satoh ◽  
Jun-Ichi Itoh ◽  
Yasuo Nagato

Abstract To characterize the SHL2 and SHL1 genes in detail, we analyzed three strains carrying weak alleles of SHL2, shl2-6, shl2-7, and shl2-8, and one weak allele of SHL1, shl1-3. In contrast to strong alleles, which result in lack of shoot meristem, strains bearing these weak alleles formed shoot meristem frequently during embryogenesis. In shl2-6 and shl2-7 mutants, the meristem was lost during seed development. Only the shl2-8 mutant could survive after germination, but it showed abnormal initiation pattern and morphology of leaves. In strains bearing the weak alleles, the shoot meristem was composed of a small number of indeterminate cells and ultimately converted into leaf primordium. The shl1-3 mutant showed phenotypes similar to those of shl2-8. Thus SHL2 and SHL1 are required for both initiation and maintenance of shoot meristem. In shl2 mutants, there was a positive correlation between the size of the expression domain of OSH1 representing the number of indeterminate cells, the frequency of shoot meristem initiation, and the duration of meristem survival. Thus the shoot meristem will not initiate in an “all-or-nothing” fashion, but is formed in various degrees depending on the strength of the alleles. Double-mutant analyses indicate that SHL2 functions upstream of SHO to establish proper organization of the shoot meristem.


Author(s):  
Abraham A. Singer

This chapter introduces the main argument of the book, describing key concepts such as the idea of “norm-governed productivity,” the use of norms to structure cooperation instead of prices. It then defines the concept of the corporation, describing the institution’s key features, and lays out the general structure of the book. Finally, it considers some conceptual and methodological issues that frame the rest of the book: the distinction between economic and political approaches, and the problem of trying to subsume the topic wholly into one or the other; and an argument for why a normative analysis of the corporation has to take certain features of markets and capitalism for granted.


Botany ◽  
2015 ◽  
Vol 93 (9) ◽  
pp. 611-621
Author(s):  
M.D. Shafiullah ◽  
Christian R. Lacroix

Myriophyllum aquaticum (Vell.) Verdc. is heterophyllous in nature with highly dissected simple leaves consisting of several lobes. KNOX (KNOTTED1-LIKE HOMEOBOX) genes are believed to have played an important role in the evolution of leaf diversity. Up-regulation of KNOX during leaf primordium initiation can lead to leaf dissection in plants with simple leaves and, if overexpressed, can produce ectopic meristems on leaves. A previous study on KNOX gene expression in the aerial form of this species showed that this gene is expressed in the shoot apical meristem (SAM), as well as in leaf primordia P0 to P8. Based on these results, it was hypothesized that the prolonged expression of the MaKN1 (Myriophyllum aquaticum Knotted1-like homeobox) gene beyond P8, might play an important role in the generation of more lobes, longer lobes, and hydathode formation in the aquatic leaves of M. aquaticum. The technique of in situ hybridization was carried out using a previously sequenced 300 bp fragment of MaKN1 to determine the expression patterns of this gene in the shoot of aquatic forms of the plant. Expression patterns of MaKN1 revealed that the SAM and leaf primordia of aquatic forms of M. aquaticum at levels P0 (youngest) to P4 were distributed throughout these structures. The level of expression of this MaKN1 gene progressively became more localized to lobes in older leaf primordia (levels P5 to P12). Previous studies of aerial forms of this plant showed MaKN1 expression until P8. Our results with aquatic forms show that the highly dissected leaf morphology in aquatic forms was the result of the prolonged expression of MaKN1 beyond P8. This resulted in the formation of elongated and slightly more numerous lobes, and hydathodes in aquatic forms. These findings support the view that KNOX genes are important developmental regulators of leaf morphogenesis and have played an important role in the evolution of leaf forms in the plant kingdom.


Sign in / Sign up

Export Citation Format

Share Document