leaf morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 33)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Mo ◽  
Liangliang He ◽  
Ye Liu ◽  
Dongfa Wang ◽  
Baolin Zhao ◽  
...  

Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.


2021 ◽  
Author(s):  
Mohammad Sadat-Hosseini ◽  
Mohammad Reza Bakhtiarizade ◽  
Naser Boroumand ◽  
Masoud Tohidfar ◽  
Sasan Aliniaeifard ◽  
...  

Abstract Walnut production is challenged by abiotic stresses. We investigated the leaf transcriptome responses of walnut under control and drought stress in 9 and 18 days. We identified 921, 1035 differentially expressed genes (DEGs) between control and drought stress groups in 9 and 18-day, respectively. In control and drought stress conditions DEGs were significantly enriched into the abscisic acid biosynthesis, regulation of stomata closure, leaf morphogenesis, carbohydrate metabolism, oxidative stress, cell wall macromolecule catabolism, and secondary metabolite biosynthesis pathways. We confirmed our RNA-Seq data using quantitative real-time PCR (qPCR) of six candidate genes. Our results indicated that more complicated transcript regulation of drought responses following prolong exposure to drought stress. In general, walnut activated more tolerance mechanisms 18 days after drought stress. Findings of this research would be useful for future studies on breeding for drought tolerance of Persian walnut and related species.


2021 ◽  
Author(s):  
Deding Su ◽  
Wei Xiang ◽  
Qin Liang ◽  
Ling Wen ◽  
Yuan Shi ◽  
...  

Leaf morphogenetic activity determines its shape diversity. However, our knowledge to the regulatory mechanism in maintaining leaf morphogenetic capacity is still limited. In tomato, gibberellin (GA) negatively regulates leaf complexity by shortening the morphogenetic window. We here reported a tomato BRI1-EMS-SUPPRESSOR 1 (BES1) transcription factor, SlBES1.8, that promoted the simplification of leaf pattern in a similar manner as GA functions. Enhanced level of SlBES1.8 dramatically decreased the sensibility of tomato to GA whereas increased the sensibility to the GA biosynthesis inhibitor, PAC. In line with the phenotypic observation, the endogenous bioactive GA contents were increased in OE-SlBES1.8 lines, which certainly promoted the degradation of the GA signaling negative regulator, SlDELLA. Moreover, transcriptomic analysis uncovered a set of overlapping genomic targets of SlBES1.8 and GA, and most of them were regulated in the same way. Expression studies showed the repression of SlBES1.8 to the transcriptions of two GA deactivated genes, SlGA2ox2 and SlGA2ox6, and one GA receptor, SlGID1b-1. Further experiments confirmed the direct regulation of SlBES1.8 to their promoters. On the other hand, SlDELLA physically interacted with SlBES1.8 and further inhibited its transcriptional regulation activity by abolishing SlBES1.8-DNA binding. Conclusively, by mediating GA deactivation and signaling, SlBES1.8 greatly influenced tomato leaf morphogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenye Lin ◽  
Ying Wang ◽  
Yoan Coudert ◽  
Daniel Kierzkowski

Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1732
Author(s):  
Sajid Hussain ◽  
Satyabrata Nanda ◽  
Junhua Zhang ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Suleman ◽  
...  

Auxins (IAA) and cytokinins (CKs) are the most influential phytohormones, having multifaceted roles in plants. They are key regulators of plant growth and developmental processes. Additionally, their interplay exerts tight control on plant development and differentiation. Although several reviews have been published detailing the auxin-cytokinin interplay in controlling root growth and differentiation, their roles in the shoot, particularly in leaf morphogenesis are largely unexplored. Recent reports have provided new insights on the roles of these two hormones and their interplay on leaf growth and development. In this review, we focus on the effect of auxins, CKs, and their interactions in regulating leaf morphogenesis. Additionally, the regulatory effects of the auxins and CKs interplay on the phyllotaxy of plants are discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nathan M. Rowarth ◽  
Bruce A. Curtis ◽  
Anthony L. Einfeldt ◽  
John M. Archibald ◽  
Christian R. Lacroix ◽  
...  

Abstract Background The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging “imperforate leaves” do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called “PCD cells” that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called “NPCD cells” retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. Results Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. Conclusions RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1672
Author(s):  
Silit Lazare ◽  
Yafit Cohen ◽  
Eitan Goldshtein ◽  
Uri Yermiyahu ◽  
Alon Ben-Gal ◽  
...  

Salt stress is a major limiting factor in avocado (Persea americana) cultivation, exacerbated by global trends towards scarcity of high-quality water for irrigation. Israeli avocado orchards have been irrigated with relatively high-salinity recycled municipal wastewater for over three decades, over which time rootstocks were selected for salt-tolerance. This study’s objective was to evaluate the physiological salt response of avocado as a function of the rootstock. We irrigated fruit-bearing ‘Hass’ trees grafted on 20 different local and introduced rootstocks with water high in salts (electrical conductivity of 1.4–1.5 dS/m). The selected rootstocks represent a wide range of genetic backgrounds, propagation methods, and horticultural characteristics. We investigated tree physiology and development during two years of salt exposure by measuring Cl and Na leaf concentrations, leaf osmolality, visible damages, trunk circumference, LAI, CO2 assimilation, stomatal conductance, spectral reflectance, stem water potential, trichomes density, and yield. We found a significant effect of the rootstocks on stress indicators, vegetative and reproductive development, leaf morphogenesis and photosynthesis rates. The most salt-sensitive rootstocks were VC 840, Dusa, and VC 802, while the least sensitive were VC 159, VC 140, and VC 152. We conclude that the rootstock strongly influences avocado tree response to salinity exposure in terms of physiology, anatomy, and development.


Author(s):  
Tariq Pervaiz ◽  
Muhammad Salman Haider ◽  
Haifeng Jia ◽  
Ting Zheng ◽  
Muhammad Faheem ◽  
...  

2021 ◽  
Author(s):  
Shao-Li Yang ◽  
Ngan Tran ◽  
Meng-Ying Tsai ◽  
Chin-Min Kimmy Ho

Stomata and leaf cuticle regulate water evaporation from the plant body and balance the trade-off between photosynthesis and water loss. We identified MYB16, a key transcription factor controlling cutin biosynthesis, from previous stomatal lineage ground cell (SLGC)-enriched transcriptome study. The preferential localization of MYB16 in SLGCs but not meristemoids suggests a link between cutin synthesis and stomatal development. Here, we showed that downregulation of MYB16 in meristemoids was directly mediated by the stomatal master transcription factor, SPEECHLESS (SPCH). The suppression of MYB16 before asymmetric division was crucial for stomatal patterning because overexpression or ectopic expression of MYB16 in meristemoids increased impermeability and elevated stomatal density and clusters. The aberrant pattern of stomata was due to reduced and disrupted establishment of polarity during asymmetric cell division. Manipulating polarity by growing seedlings on hard agar rescued stomatal clusters and polarity defects in MYB16 ectopic lines. By expressing a cutinase in MYB16 ectopic lines, stomatal clustering was reduced, which suggests that the ectopic accumulation of cuticle affects the polarity in asymmetrically dividing cells and causes clustered stomata. Taken together, inhibiting MYB16 expression by SPCH in early stomatal lineage is required to correctly place the polarity complex for proper stomatal patterning during leaf morphogenesis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Li ◽  
Tongbing Su ◽  
Deshuang Zhang ◽  
Weihong Wang ◽  
Xiaoyun Xin ◽  
...  

AbstractHeterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.


Sign in / Sign up

Export Citation Format

Share Document