Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3

Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 325-333 ◽  
Author(s):  
S.E. Plyte ◽  
E. O'Donovan ◽  
J.R. Woodgett ◽  
A.J. Harwood

Glycogen synthase kinase-3 (GSK-3) is required during metazoan development to mediate the effects of the extracellular signal wingless/Wnt-1 and hence is necessary for correct cell type specification. GSK-3 also regulates cell fate during Dictyostelium development, but in this case it appears to mediate the effects of extracellular cAMP. By direct measurement of GSK-3 kinase activity during Dictyostelium development, we find that there is a rise in activity at the initiation of multicellular development which can be induced by cAMP. The timing of the rise correlates with the requirement for the Dictyostelium homologue of GSK-3, GSKA, to specify cell fate. We show that loss of the cAMP receptor cAR3 almost completely abolishes the rise in kinase activity and causes a mis-specification of cell fate that is equivalent to that seen in a gskA- mutant. The phenotype of a cAR3(−) mutant however is less severe than loss of gskA and ultimately gives rise to an apparently wild-type fruiting body. These results indicate that in Dictyostelium extracellular cAMP acts via cAR3 to cause a rise in GSKA kinase activity which regulates cell type patterning during the initial stages of multicellularity.

2015 ◽  
Vol 89 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
Crystal Woodard ◽  
Gangling Liao ◽  
C. Rory Goodwin ◽  
Jianfei Hu ◽  
Zhi Xie ◽  
...  

ABSTRACTThe Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence forin vivophosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death.IMPORTANCEKSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human protein microarray for ERK-primed GSK-3 substrates. One of the proteins identified, iASPP, showed reduced levels in the presence of GSK-3. Further, blocking iASPP activity increased cell death, particularly in p53 wild-type BC3 PEL cells.


Cell ◽  
1995 ◽  
Vol 80 (1) ◽  
pp. 139-148 ◽  
Author(s):  
A.J Harwood ◽  
S.E Plyte ◽  
J Woodgett ◽  
H Strutt ◽  
R.R Kay

2006 ◽  
Vol 26 (7) ◽  
pp. 2857-2868 ◽  
Author(s):  
Xinming Cai ◽  
Min Li ◽  
Julie Vrana ◽  
Michael D. Schaller

ABSTRACT Paxillin is a 68-kDa focal adhesion-associated protein that plays an important role in controlling cell spreading and migration. Phosphorylation of paxillin regulates its biological activity and thus has warranted investigation. Serine 126 and serine 130 were previously identified as two major extracellular signal-regulated kinase (ERK)-dependent phosphorylation sites in Raf-transformed fibroblasts. Here serine 126 is identified as a phosphorylation site induced by lipopolysaccharide (LPS) stimulation of RAW264.7 cells. A number of other stimuli, including adhesion and colony-stimulating factor, induce serine 126 phosphorylation in RAW264.7 cells, and nerve growth factor (NGF) treatment induces serine 126 phosphorylation in PC12 cells. The kinase responsible for phosphorylation of this site is identified as glycogen synthase kinase 3 (GSK-3). Interestingly, this GSK-3-dependent phosphorylation is regulated via an ERK-dependent priming mechanism, i.e., phosphorylation of serine 130. Phosphorylation of S126/S130 was required to promote spreading in paxillin null cells, and LPS-induced spreading of RAW264.7 cells was inhibited by expression of the paxillin S126A/S130A mutant. Furthermore, this mutant also retarded NGF-induced PC12 cell neurite outgrowth. Hence, phosphorylation of paxillin on serines 126 and 130, which is mediated by an ERK/GSK-3 dual-kinase mechanism, plays an important role in cytoskeletal rearrangement.


1993 ◽  
Vol 294 (3) ◽  
pp. 625-629 ◽  
Author(s):  
G I Welsh ◽  
C G Proud

We have studied the control of insulin-regulated protein kinases in Chinese hamster ovary cells transfected with the human insulin receptor (CHO.T cells). Among these enzymes is one that is obtained after chromatography of cell extracts on Mono-S, whose activity is decreased (7.3 +/- 1.9-fold) within 10 min of insulin treatment. This enzyme phosphorylates glycogen synthase and the largest subunit of protein synthesis eukaryotic initiation factor (eIF)-2B (the guanine nucleotide exchange factor). The kinase appears to be glycogen synthase kinase-3 (GSK-3), on the basis of: (1) its ability to phosphorylate a peptide based on the phosphorylation sites for GSK-3 in glycogen synthase, and (2) the finding that the fractions possessing this activity contain immunoreactive GSK-3, whose peak is coincident with that of kinase activity, as judged by immunoblotting using antibodies specific for the alpha- and beta-isoforms of GSK-3. The decrease in kinase activity induced by insulin was reversed by treatment of the column fractions with protein phosphatase-2A. These data indicate that insulin rapidly causes inactivation of GSK-3 and that this is due to phosphorylation of GSK-3. The implications of these findings for the control of glycogen and protein metabolism are discussed.


2007 ◽  
Vol 185 (1-3) ◽  
pp. 73-84 ◽  
Author(s):  
Bradley W. Doble ◽  
James R. Woodgett

1999 ◽  
Vol 19 (2) ◽  
pp. 1427-1437 ◽  
Author(s):  
Monica A. Torres ◽  
Hagit Eldar-Finkelman ◽  
Edwin G. Krebs ◽  
Randall T. Moon

ABSTRACT β-Catenin is a multifunctional protein that binds cadherins at the plasma membrane, HMG box transcription factors in the nucleus, and several cytoplasmic proteins that are involved in regulating its stability. In developing embryos and in some human cancers, the accumulation of β-catenin in the cytoplasm and subsequently the nuclei of cells may be regulated by the Wnt-1 signaling cascade and by glycogen synthase kinase 3 (GSK-3). This has increased interest in regulators of both GSK-3 and β-catenin. Searching for kinase activities able to phosphorylate the conserved, inhibitory-regulatory GSK-3 residue serine 9, we found p90 rsk to be a potential upstream regulator of GSK-3. Overexpression of p90 rsk in Xenopus embryos leads to increased steady-state levels of total β-catenin but not of the free soluble protein. Instead, p90 rsk overexpression increases the levels of β-catenin in a cell fraction containing membrane-associated cadherins. Consistent with the lack of elevation of free β-catenin levels, ectopic p90 rsk was unable to rescue dorsal cell fate in embryos ventralized by UV irradiation. We show that p90 rsk is a downstream target of fibroblast growth factor (FGF) signaling during early Xenopus development, since ectopic FGF signaling activates both endogenous and overexpressed p90 rsk . Moreover, overexpression of a dominant negative FGF receptor, which blocks endogenous FGF signaling, leads to decreased p90 rsk kinase activity. Finally, we report that FGF inhibits endogenous GSK-3 activity inXenopus embryos. We hypothesize that FGF and p90 rsk play heretofore unsuspected roles in modulating GSK-3 and β-catenin.


2010 ◽  
Vol 21 (15) ◽  
pp. 2788-2796 ◽  
Author(s):  
Regina Teo ◽  
Kimberley J. Lewis ◽  
Josephine E. Forde ◽  
W. Jonathan Ryves ◽  
Jonathan V. Reddy ◽  
...  

Glycogen synthase kinase-3 (GSK3) is a highly conserved protein kinase that is involved in several important cell signaling pathways and is associated with a range of medical conditions. Previous studies indicated a major role of the Dictyostelium homologue of GSK3 (gskA) in cell fate determination during morphogenesis of the fruiting body; however, transcriptomic and proteomic studies have suggested that GSK3 regulates gene expression much earlier during Dictyostelium development. To investigate a potential earlier role of GskA, we examined the effects of loss of gskA on cell aggregation. We find that cells lacking gskA exhibit poor chemotaxis toward cAMP and folate. Mutants fail to activate two important regulatory signaling pathways, mediated by phosphatidylinositol 3,4,5-trisphosphate (PIP3) and target of rapamycin complex 2 (TORC2), which in combination are required for chemotaxis and cAMP signaling. These results indicate that GskA is required during early stages of Dictyostelium development, in which it is necessary for both chemotaxis and cell signaling.


1994 ◽  
Vol 303 (3) ◽  
pp. 701-704 ◽  
Author(s):  
V Stambolic ◽  
J R Woodgett

Glycogen synthase kinase-3 (GSK-3), a protein-serine kinase implicated in cell-fate determination and differentiation, phosphorylates several regulatory proteins that are activated by dephosphorylation in response to hormones or growth factors. GSK-3 beta is phosphorylated in vitro at serine 9 by p70 S6 kinase and p90rsk-1, resulting in its inhibition [Sutherland, Leighton, and Cohen (1993) Biochem. J. 296, 15-19]. Using HeLa cells expressing GSK-3 beta or a mutant containing alanine at residue 9, we demonstrate that serine 9 is modified in intact cells and is targeted specifically by p90rsk-1, and that phosphorylation leads to loss of activity. Since p90rsk-1 is directly activated by mitogen-activated protein kinases, agonists of this pathway, such as insulin, repress GSK-3 function.


Sign in / Sign up

Export Citation Format

Share Document