discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis

Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4623-4633 ◽  
Author(s):  
K. Gallagher ◽  
L.G. Smith

In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.

2018 ◽  
Vol 217 (11) ◽  
pp. 3785-3795 ◽  
Author(s):  
Zsolt G. Venkei ◽  
Yukiko M. Yamashita

The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.


Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4843-4853 ◽  
Author(s):  
Qin Shen ◽  
Weimin Zhong ◽  
Yuh Nung Jan ◽  
Sally Temple

Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a β-tubulin III− progenitor and a β-tubulin III+ neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin+ progenitor and a Nestin– neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.


1974 ◽  
Vol 15 (2) ◽  
pp. 429-441
Author(s):  
D. HESS ◽  
D. BAYER

Ultrastructural studies of trifluralin-treated cells in lateral root meristems of cotton (Gossypium hirsutum L.) revealed that mitotic disruptions were due to the absence of microtubules. The extent of disruption varied between individual roots and correlated with the presence or absence of microtubules. Where microtubules were absent, cells began division with a normal prophase chromosome cycle. The chromosomes did not line up along a metaphase plate, but coalesced in the cell. If cell division had begun prior to microtubule disappearance the mitotic process was arrested at the stage that had been reached when the disappearance occurred. In some cell divisions randomly oriented microtubules were noted, with mitosis apparently arrested at those stages. Nuclear envelope reformation yielded cells that were polyploid, polymorphonucleate, binucleate, or occasionally multinucleate. If microtubules were present and if their orientation were normal, all stages of mitosis occurred. The range of mitotic disruption observed can be explained by the threshold concentration for microtubule disappearance being very near aqueous saturation of trifluralin.


2018 ◽  
Author(s):  
Priya Ramakrishna ◽  
Graham A Rance ◽  
Lam Dai Vu ◽  
Evan Murphy ◽  
Kamal Swarup ◽  
...  

ABSTRACTIn plants, post-embryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed, and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires asymmetric cell division in adjacent pericycle cells. Characterization of an expansin a1 (expa1) mutant has revealed a novel checkpoint during lateral root formation. Specifically, a minimal pericycle width was found to be necessary and sufficient to trigger asymmetric pericycle cell divisions during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.SIGNFICANCE STATEMENTOrgan formation is an essential process in plants and animals, driven by cell division and cell identity establishment. Root branching, where lateral roots form along the primary root axis, increases the root system and aids capture of water and nutrients. We have discovered that tight control of cell width is necessary to co-ordinate asymmetric cell divisions in cells that give rise to a new lateral root organ. While biomechanical processes have been shown to play a role in plant organogenesis, including lateral root formation, our data give new mechanistic insights into the cell size checkpoint during lateral root initiation.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4587-4598 ◽  
Author(s):  
J. Whangbo ◽  
J. Harris ◽  
C. Kenyon

Wnt signaling systems play important roles in the generation of cell and tissue polarity during development. We describe a Wnt signaling system that acts in a new way to orient the polarity of an epidermal cell division in C. elegans. In this system, the EGL-20/Wnt signal acts in a permissive fashion to polarize the asymmetric division of a cell called V5. EGL-20 regulates this polarization by counteracting lateral signals from neighboring cells that would otherwise reverse the polarity of the V5 cell division. Our findings indicate that this lateral signaling pathway also involves Wnt pathway components. Overexpression of EGL-20 disrupts both the asymmetry and polarity of lateral epidermal cell divisions all along the anteroposterior (A/P) body axis. Together our findings suggest that multiple, inter-related Wnt signaling systems may act together to polarize asymmetric cell divisions in this tissue.


2007 ◽  
Vol 15 (6) ◽  
pp. 3-5
Author(s):  
Stephen W. Carmichael ◽  
Gary C. Schoenwolf

In the mammalian embryo, the first axis to appear is at the time of the fifth cell division when the inner cell mass (ICM) becomes visible. The localization of the ICM on one side of a cavity formed within the cluster of dividing cells marks the embryonic-abembryonic (E-Ab) axis. This name derives from the fact the most of the embryo will develop from the ICM, whereas other tissues (the placenta, etc.) will develop from the other cells. There has been a long-standing controversy as to what determines the mammalian E-Ab axis; is the information inherently in the zygote, or is it determined after several cell divisions? In an elegant series of studies whereby dividing cells were labeled using new molecular genetic tools and then carefully followed during development, Yoko Kurotaki, Kohei Hatta, Kazuki Nakao, Yo-ichi Nabeshima, and Toshihiko Fujimori have provided an answer in a mouse model.


Sign in / Sign up

Export Citation Format

Share Document