The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana

Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4763-4770 ◽  
Author(s):  
W.J. Soppe ◽  
L. Bentsink ◽  
M. Koornneef

The transition to flowering is a crucial moment in a plant's life cycle of which the mechanism has only been partly revealed. In a screen for early flowering, after mutagenesis of the late-flowering fwa mutant of Arabidopsis thaliana, the early flowering in short days (efs) mutant was identified. Under long-day light conditions, the recessive monogenic efs mutant flowers at the same time as wild type but, under short-day conditions, the mutant flowers much earlier. In addition to its early-flowering phenotype, efs has several pleiotropic effects such as a reduction in plant size, fertility and apical dominance. Double mutant analysis with several late-flowering mutants from the autonomous promotion (fca and fve) and the photoperiod promotion (co, fwa and gi) pathways of flowering showed that efs reduces the flowering time of all these mutants. However, efs is completely epistatic to fca and fve but additive to co, fwa and gi, indicating that EFS is an inhibitor of flowering specifically involved in the autonomous promotion pathway. A vernalisation treatment does not further reduce the flowering time of the efs mutant, suggesting that vernalisation promotes flowering through EFS. By comparing the length of the juvenile and adult phases of vegetative growth for wild-type, efs and the double mutant plants, it is apparent that efs mainly reduces the length of the adult phase.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168g-1168 ◽  
Author(s):  
Edward J. Ryder

Genes for flowering time appear to be relatively common in lettuce and other Lactuca species. These include previously described major genes Ef-1 an Ef-2, other genes of discrete effect and genes acting in a quantitative manner. Our goals in studying the flowering time phenomenon are: 1)describe the inheritance of the traits, 2) establish their relationship to each other, and 3) elucidate their evolutionary significance.The PI 175735 (L. serriola) is an accession with narrow leaves, spines and anthocyanin. Its flowering time is daylength related; it is early flowering under long days and late flowering under short days. It was crossed with the late flowering line C-2-1-1, which is homozygous for both late alleles in the Ef system. The F1 is late under short days and early under long days. The F2 population and F3 families were grown under long day conditions in the greenhouse, Segregation in the F2 was 3 early: 1 late. Among F3 families from early plants, segregation was 1 homozygous early: 2 segregating. Within segregating families, the ratio was again 3:1. The evidence suggests a single gene with earliness dominant.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168G-1168
Author(s):  
Edward J. Ryder

Genes for flowering time appear to be relatively common in lettuce and other Lactuca species. These include previously described major genes Ef-1 an Ef-2, other genes of discrete effect and genes acting in a quantitative manner. Our goals in studying the flowering time phenomenon are: 1)describe the inheritance of the traits, 2) establish their relationship to each other, and 3) elucidate their evolutionary significance. The PI 175735 (L. serriola) is an accession with narrow leaves, spines and anthocyanin. Its flowering time is daylength related; it is early flowering under long days and late flowering under short days. It was crossed with the late flowering line C-2-1-1, which is homozygous for both late alleles in the Ef system. The F1 is late under short days and early under long days. The F2 population and F3 families were grown under long day conditions in the greenhouse, Segregation in the F2 was 3 early: 1 late. Among F3 families from early plants, segregation was 1 homozygous early: 2 segregating. Within segregating families, the ratio was again 3:1. The evidence suggests a single gene with earliness dominant.


2001 ◽  
Vol 79 (6) ◽  
pp. 657-665 ◽  
Author(s):  
Quintin J Steynen ◽  
Dee A Bolokoski ◽  
Elizabeth A Schultz

We have identified three phases within the wild-type Arabidopsis thaliana (L.) Heynh. rosette, based on significant differences in leaf shape, size, vascular pattern, and presence of abaxial trichomes. To test the hypothesis that a single, central mechanism controls the progression through all plant phases and that conditions that alter the time to flowering will also alter the progression through vegetative phases, we analysed the rosette phases under such conditions. In support of our hypothesis, we determined that those conditions (loss of LEAFY activity, short days) that decelerate time to flowering show decelerated progression through the rosette phases, while those conditions (loss of TERMINAL FLOWER, overexpression of LEAFY, low light) that accelerate time to flowering show accelerated progression through the rosette phases. In all conditions except short days, the length of the first phase was unaffected, indicating that this phase is less susceptible to influences of the central mechanism. Progression through the subsequent two rosette phases was accelerated differentially, such that the second phase was affected more strongly than the first. This supports the idea that, in the rosette, as in the inflorescence, the inhibition of phase transition by the central mechanism is gradually decreasing.Key words: phase change, flowering time, Arabidopsis thaliana, LEAFY, TERMINAL FLOWER, heteroblasty.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 403-410
Author(s):  
Ove Nilsson ◽  
Ilha Lee ◽  
Miguel A Blázquez ◽  
Detlef Weigel

Abstract Among the genes that control the transition to flowering in Arabidopsis is a large group whose inactivation causes a delay in flowering. It has been difficult to establish different pathways in which the flowering-time genes might act, because mutants with lesions in these genes have very similar phenotypes. Among the putative targets of the flowering-time genes is another group of genes, which control the identity of individual meristems. Overexpression of one of the meristem-identity genes, LEAFY, can cause the precocious generation of flowers and thus early flowering. We have exploited the opposite phenotypes seen in late-flowering mutants and LEAFY overexpressers to clarify the genetic interactions between flowering-time genes and LEAFY. According to epistatic relationships, we can define one class of flowering-time genes that affects primarily the response to LEAFY activity, and another class of genes that affects primarily the transcriptional induction of LEAFY. These observations allow us to expand previously proposed models for the genetic control of flowering time.


1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty van Loenen-Martinet ◽  
Hetty Blankestijn de Vries

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. F. Prewitt ◽  
A. Shalit-Kaneh ◽  
S. N. Maximova ◽  
M. J. Guiltinan

Abstract Background In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways. To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time regulator affects cacao plant’s transition to flowering could lead to strategies to accelerate cacao breeding. Results BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENTRORADIALIS/TERMINAL FLOWER1/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the mutant to wild-type flowering time. Gene expression studies reveal that TcFT is spatially and temporally expressed in a manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates. Conclusion We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The role of the cacao’s single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition, overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly conserved function of FT and the mechanisms controlling flowering in cacao.


1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty Loenen-Martinet ◽  
Hetty Blankestijn de Vries

2021 ◽  
Vol 499 (1) ◽  
pp. 233-237
Author(s):  
D. S. Gorshkova ◽  
I. A. Getman ◽  
L. I. Sergeeva ◽  
Vl. V. Kuznetsov ◽  
E. S. Pojidaeva

Abstract The effect of T-DNA insertion in the 3'-UTR region of Arabidopsis thaliana At3g58450 gene encoding the Germination-Related Universal Stress Protein (GRUSP) was studied. It was found that under a long-day condition this mutation delays transition to flowering of grusp-115 transgenic line that due to a reduced content of endogenous bioactive gibberellins GA1 and GA3 in comparison to the wild-type plants (Col-0). Exogenous GA accelerated flowering of both lines but did not change the time of difference in the onset of flowering between Col-0 and grusp-115. In addition to changes in GA metabolism, grusp-115 evidently has disturbances in realization of the signal that induces flowering. This is confirmed by the results of gene expression of the floral integrator FLOWERING LOCUS T (FT) and the floral repressor FLOWERING LOCUS C (FLC), which are key flowering regulators and acting opposite. We hypothesize that the formation of grusp-115 phenotype can also be affected by a low expression level of FT due to up-regulated FLC expression.


Sign in / Sign up

Export Citation Format

Share Document