FGF signalling controls the timing of Pax6 activation in the neural tube

Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4837-4843 ◽  
Author(s):  
N. Bertrand ◽  
F. Medevielle ◽  
F. Pituello

We have recently demonstrated that Pax6 activation occurs in phase with somitogenesis in the spinal cord. Here we show that the presomitic mesoderm exerts an inhibitory activity on Pax6 expression. This repressive effect is mediated by the FGF signalling pathway. The presomitic mesoderm displays a decreasing caudorostral gradient of FGF8, and grafting FGF8-soaked beads at the level of the neural tube abolishes Pax6 activation. Conversely, when FGF signalling is disrupted, Pax6 is prematurely activated in the neural plate. We propose that the progression of Pax6 activation in the neural tube is controlled by the caudal regression of the anterior limit of FGF activity. Hence, as part of its posteriorising activity, FGF8 downregulation acts as a switch from early (posterior) to a later (anterior) state of neural epithelial development.

Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 587-596 ◽  
Author(s):  
F. Pituello ◽  
F. Medevielle ◽  
F. Foulquier ◽  
A.M. Duprat

Pax6 is a paired-type homeobox gene expressed in discrete regions of the central nervous system. In the spinal cord of 7- to 10-somite-stage chicken embryos, Pax6 is not detected within the caudal neural plate, but is progressively upregulated in the neuroepithelium neighbouring each newly formed somite. In the present study, we accumulate data suggesting that this initial activation of Pax6 is controlled via the paraxial mesoderm in correlation with somitogenesis. First, we observed that high levels of Pax6 expression occur independently of the presence of SHH-expressing cells when neural plates are maintained in culture in the presence of paraxial mesoderm. Second, grafting a somite caudally under a neural plate that has not yet expressed the gene induces a premature activation of Pax6. Furthermore, after the graft of a somite, a period of incubation corresponding to the individualization of a new somite in the host embryo produces an appreciable activation of Pax6. Conversely, Pax6 expression is delayed under conditions where somitogenesis is retarded, i.e., when the rostral part of the presomitic mesoderm is replaced by the same tissue isolated more caudally. Finally, Pax6 transcripts disappear from the neural tube when a somite is replaced by presomitic mesoderm, suggesting that the somite is also involved in the maintenance of Pax6 expression in the developing spinal cord. All together these observations lead to the proposal that Pax6 activation is triggered by the paraxial mesoderm in phase with somitogenesis in the cervical spinal cord.


Author(s):  
Karl Zilles ◽  
Nicola Palomero-Gallagher

The pre- and post-natal development of the human nervous system is briefly described, with special emphasis on the brain, particularly the cerebral and cerebellar cortices. The central nervous system originates from a specialized region of the ectoderm—the neural plate—which develops into the neural tube. The rostral part of the neural tube forms the adult brain, whereas the caudal part (behind the fifth somite) differentiates into the spinal cord. The embryonic brain has three vesicular enlargements: the forebrain, the midbrain, and the hindbrain. The histogenesis of the spinal cord, hindbrain, cerebellum, and cerebral cortex, including myelination, is discussed. The chapter closes with a description of the development of the hemispheric shape and the formation of gyri.


Author(s):  
Martin E. Atkinson

The early development of the nervous system, the process of neurulation, has already been outlined in Chapter 8 and illustrated in Figure 8.4. To briefly recap, an area of dorsal ectoderm is induced by the underlying notochord to form the neural plate during the third week of development. The lateral edges of the neural plate rise to form the neural folds which eventually fold over and unite in the midline by the end of the fourth week to produce the neural tube. A distinct cell population on the crest of the neural folds, the neural crest, migrates from the forming neural tube to form various structures, including components of the peripheral nervous system. The closed neural tube consists of a large diameter anterior portion that will become the brain and a longer cylindrical posterior section, the future spinal cord. Initially, the neural plate is a single cell layer, but concentric layers of cells can be recognized by the time the neural tube has closed. An inner layer of ependymal cells surrounds the central spinal canal. Neuroblasts, the precursors of neurons, make up the bulk of the neural tube called the mantle layer; this will become the grey matter of the spinal cord. Neuroblasts do not extend processes until they have completed their differentiation. When the cells in a particular location are fully differentiated, the neuronal processes emerging from the neuroblasts form an outer marginal layer which ultimately becomes the white matter of the spinal cord. Figure 19.1B shows that the neural tube changes shape due to proliferation of cells in the mantle layer. This figure also indicates two midline structures in the roof and floor of the tube, known as the roof plate and floor plate. They are important in the determination of the types of neurons that develop from the mantle layer. The floor plate is induced by the expression of a protein product of a gene called sonic hedgehog (SHH) produced by the underlying notochord; the floor plate then expresses the same gene itself. Neuroblasts nearest to the floor plate receive a high dose of SHH protein and respond by differentiating into motor neurons; as seen in Figure 19.1B, these cells group together to form bilateral ventrolateral basal plates.


Development ◽  
1958 ◽  
Vol 6 (3) ◽  
pp. 466-478
Author(s):  
J. Hubertha Bijtel

The idea that the hinder part of the trunk together with the tail or the tail alone develops by the outgrowth of a cell mass which is in every respect indifferent has been disproved since 1928 for the Amphibia. The results of experiments with vital staining (Bijtel & Woerdeman, 1928; Bijtel, 1929, 1931) and with microsurgical methods (Bijtel, 1936) have shown that the presumptive rudiments of the tail organs (epidermis, spinal cord, muscle segments, tail-gut) are already present in the neural plate stage as more or less separate cell territories. During and immediately after the transformation of the neural plate into the neural tube, these cell territories are brought together into the tail-bud by morphogenetic movements. Holmdahl (1939 a, b, 1947) and Vogt (1939) have criticized this conception. They adhered to the view that the organs of the hinder part of the runk and of the tail (Holmdahl) or only the axial organs of the tail (Vogt, p. 127) originate from an indifferent blastema.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan M. Werner ◽  
Maraki Y. Negesse ◽  
Dominique L. Brooks ◽  
Allyson R. Caldwell ◽  
Jafira M. Johnson ◽  
...  

AbstractPrimary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


Development ◽  
1968 ◽  
Vol 19 (2) ◽  
pp. 109-119
Author(s):  
Judith Shulman Weis

In teleost fishes, unlike many other vertebrates, the spinal cord originates as a solid structure, the neural keel, which subsequently hollows out. Unlike vertebrates in which the neural tube is formed from neural folds, and where the neural crest arises from wedge-shaped masses of tissue connecting the neural tube to the general ectoderm, teleosts do not possess a clear morphological neural crest. Initially, the dorsal surface of the keel is broadly attached to the ectoderm as described by Shepard (1961). As the neural primordia become larger and more discrete, the region of attachment narrows, and cells become loose (the ‘loose crest stage’). These cells represent the neural crest. Subsequently they begin to migrate and to differentiate into the various derivatives of neural crest. Both sensory and sympathetic neurons arise from neural crest. At the time of their migration the cells are not morphologically distinguishable.


Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 457-464 ◽  
Author(s):  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Yan Li ◽  
Manli Chuai ◽  
Kenneth Ka Ho Lee ◽  
...  

SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


2021 ◽  
Author(s):  
Teresa Rayon ◽  
Rory J. Maizels ◽  
Christopher Barrington ◽  
James Briscoe

AbstractThe spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly and physiologically distinct neuronal subtypes that are generated in a characteristic spatial-temporal arrangement from progenitors in the embryonic neural tube. The systematic mapping of gene expression in mouse embryos has provided insight into the diversity and complexity of cells in the neural tube. For human embryos, however, less information has been available. To address this, we used single cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie Stages (CS) CS12, CS14, CS17 and CS19 from Gestational Weeks (W) 4-7. In total we recovered the transcriptomes of 71,219 cells. Analysis of progenitor and neuronal populations from the neural tube, as well as cells of the peripheral nervous system, in dorsal root ganglia adjacent to the neural tube, identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with existing mouse datasets revealed the overall similarity of mouse and human neural tube development while highlighting specific features that differed between species. These data provide a catalogue of gene expression and cell type identity in the developing neural tube that will support future studies of sensory and motor control systems and can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2271-2282 ◽  
Author(s):  
Felix A. Mic ◽  
Robert J. Haselbeck ◽  
Arnold E. Cuenca ◽  
Gregg Duester

Retinoid control of vertebrate development depends upon tissue-specific metabolism of retinol to retinoic acid (RA). The RA biosynthetic enzyme RALDH2 catalyzes much, but not all, RA production in mouse embryos, as revealed here with Raldh2 null mutants carrying an RA-responsive transgene. Targeted disruption of Raldh2 arrests development at midgestation and eliminates all RA synthesis except that associated with Raldh3 expression in the surface ectoderm of the eye field. Conditional rescue of Raldh2–/– embryos by limited maternal RA administration allows development to proceed and results in the establishment of additional sites of RA synthesis linked to Raldh1 expression in the dorsal retina and to Raldh3 expression in the ventral retina, olfactory pit and urinary tract. Unexpectedly, conditionally rescued Raldh2–/– embryos also possess novel sites of RA synthesis in the neural tube and heart that do not correspond to expression of Raldh1-3. RA synthesis in the mutant neural tube was localized in the spinal cord, posterior hindbrain and portions of the midbrain and forebrain, whereas activity in the mutant heart was localized in the conotruncus and sinus venosa. In the posterior hindbrain, this novel RA-generating activity was expressed during establishment of rhombomeric boundaries. In the spinal cord, the novel activity was localized in the floorplate plus in the intermediate region where retinoid-dependent interneurons develop. These novel RA-generating activities in the neural tube and heart fill gaps in our knowledge of how RA is generated spatiotemporally and may, along with Raldh1 and Raldh3, contribute to rescue of Raldh2–/– embryos by producing RA locally.


Sign in / Sign up

Export Citation Format

Share Document