Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye

Development ◽  
2000 ◽  
Vol 127 (5) ◽  
pp. 945-956 ◽  
Author(s):  
J.M. Collinson ◽  
R.E. Hill ◽  
J.D. West

Chimaeric mice were made by aggregating Pax6(−/−) and wild-type mouse embryos, in order to study the interaction between the optic vesicle and the prospective lens epithelium during early stages of eye development. Histological analysis of the distribution of homozygous mutant cells in the chimaeras showed that the cell-autonomous removal of Pax6(−/−) cells from the lens, shown previously at E12.5, is nearly complete by E9.5. Most mutant cells are eliminated from an area of facial epithelium wider than, but including, the developing lens placode. This result suggests a role for Pax6 in maintaining a region of the facial epithelium that has the tissue competence to undergo lens differentiation. Segregation of wild-type and Pax6(−/−) cells occurs in the optic vesicle at E9.5 and is most likely a result of different adhesive properties of wild-type and mutant cells. Also, proximo-distal specification of the optic vesicle (as assayed by the elimination of Pax6(−/−) cells distally), is disrupted in the presence of a high proportion of mutant cells. This suggests that Pax6 operates during the establishment of patterning along the proximo-distal axis of the vesicle. Examination of chimaeras with a high proportion of mutant cells showed that Pax6 is required in the optic vesicle for maintenance of contact with the overlying lens epithelium. This may explain why Pax6(−/−) optic vesicles are inefficient at inducing a lens placode. Contact is preferentially maintained when the lens epithelium is also wild-type. Together, these results demonstrate requirements for functional Pax6 in both the optic vesicle and surface epithelia in order to mediate the interactions between the two tissues during the earliest stages of eye development.

Author(s):  
Alina Oltean ◽  
David C. Beebe ◽  
Larry A. Taber

Invagination of epithelia is an essential morphogenetic process that occurs in early eye development. The mechanics of the tissue forces necessary for eye invagination are not yet understood [1]. The eyes begin as two optic vesicles that grow outwards from the forebrain and adhere to the surface ectoderm. At this point of contact, both the surface ectoderm and optic vesicle thicken, forming the lens placode and retinal placode, respectively. The two placodes then bend inward to create the lens vesicle and bilayered optic cup (OC) [1, 2].


1986 ◽  
Vol 6 (4) ◽  
pp. 1296-1303
Author(s):  
B Aronow ◽  
P Hollingsworth ◽  
J Patrick ◽  
B Ullman

From a mutagenized population of wild-type mouse (S49) T-lymphoma cells, a clone, 80-5D2, was isolated in a single step by virtue of its ability to survive in 80 nM 5-fluorouridine. Unlike previously isolated nucleoside transport-deficient cell lines (A. Cohen, B. Ullman, and D. W. Martin, Jr., J. Biol. Chem. 254:112-116, 1979), 80-5D2 cells were only slightly less sensitive to growth inhibition by a variety of cytotoxic nucleosides and were capable of proliferating in hypoxanthine-amethopterin-thymidine-containing medium. The molecular basis for the phenotype of 80-5D2 cells was incomplete deficiency in the ability of the mutant cells to translocate nucleosides across the plasma membrane. Interestingly, mutant cells were more capable than wild-type cells of transporting the nucleobase hypoxanthine. Residual transport of adenosine into 80-5D2 cells was just as sensitive to inhibition by nucleosides and more sensitive to inhibition by hypoxanthine than that in wild-type cells, indicating that the phenomena of ligand binding and translocation can be uncoupled genetically. The 80-5D2 cells lacked cell surface binding sites for the potent inhibitor of nucleoside transport p-nitrobenzylthioinosine (NBMPR) and, consequently, were largely resistant to the physiological effects of NBMPR. However, the altered transporter retained its sensitivity to dipyridamole, another inhibitor of nucleoside transport. The biochemical phenotype of the 80-5D2 cell line supports the hypothesis that the determinants that comprise the nucleoside carrier site, the hypoxanthine carrier site, the NBMPR binding site, and the dipyridamole binding site of the nucleoside transport function of mouse S49 cells are genetically distinguishable.


1986 ◽  
Vol 6 (4) ◽  
pp. 1296-1303 ◽  
Author(s):  
B Aronow ◽  
P Hollingsworth ◽  
J Patrick ◽  
B Ullman

From a mutagenized population of wild-type mouse (S49) T-lymphoma cells, a clone, 80-5D2, was isolated in a single step by virtue of its ability to survive in 80 nM 5-fluorouridine. Unlike previously isolated nucleoside transport-deficient cell lines (A. Cohen, B. Ullman, and D. W. Martin, Jr., J. Biol. Chem. 254:112-116, 1979), 80-5D2 cells were only slightly less sensitive to growth inhibition by a variety of cytotoxic nucleosides and were capable of proliferating in hypoxanthine-amethopterin-thymidine-containing medium. The molecular basis for the phenotype of 80-5D2 cells was incomplete deficiency in the ability of the mutant cells to translocate nucleosides across the plasma membrane. Interestingly, mutant cells were more capable than wild-type cells of transporting the nucleobase hypoxanthine. Residual transport of adenosine into 80-5D2 cells was just as sensitive to inhibition by nucleosides and more sensitive to inhibition by hypoxanthine than that in wild-type cells, indicating that the phenomena of ligand binding and translocation can be uncoupled genetically. The 80-5D2 cells lacked cell surface binding sites for the potent inhibitor of nucleoside transport p-nitrobenzylthioinosine (NBMPR) and, consequently, were largely resistant to the physiological effects of NBMPR. However, the altered transporter retained its sensitivity to dipyridamole, another inhibitor of nucleoside transport. The biochemical phenotype of the 80-5D2 cell line supports the hypothesis that the determinants that comprise the nucleoside carrier site, the hypoxanthine carrier site, the NBMPR binding site, and the dipyridamole binding site of the nucleoside transport function of mouse S49 cells are genetically distinguishable.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1433-1442 ◽  
Author(s):  
J.C. Grindley ◽  
D.R. Davidson ◽  
R.E. Hill

Small eye (Sey) mice homozygous for mutations in the Pax-6 gene have no lenses and no nasal cavities. We have examined the ontogeny of eye and nasal defects in Sey/Sey embryos and have related the defects seen to the pattern of Pax-6 mRNA expression in the mouse during normal eye and nasal development. There are two principal components of the early eye, the neural ectoderm of the optic vesicle, which forms the retina, and the overlying surface ectoderm, which forms the lens and cornea. By studying these interacting tissues in normal and Sey/Sey embryos, we have identified processes for which Pax-6 is important and can thus suggest possible roles for the Pax-6 gene. Pax-6 is essential for the formation of lens placodes from surface ectoderm. In normal development, early Pax-6 mRNA expression in a broad domain of surface ectoderm is downregulated, but expression is specifically maintained in the developing lens placode. Moreover, other Pax-6-expressing tissues are frequently those that have can transdifferentiate into lens. Thus, phenotype and expression together suggest a role for Pax-6 in lens determination. At least some functions of Pax-6 can be separated from the influence of other tissues. Early Sey/Sey optic vesicles are abnormally broad and fail to constrict proximally. These defects occur prior to the time of lens placode formation and probably reflect a requirement for Pax-6 in neural ectoderm. In surface ectoderm domains, where Pax-6 expression is known to be independent of the presence of an optic vesicle, Pax-6 function is required for the maintenance of its own transcription. The mutual dependency of lens and optic vesicle development can also be studied using the Small eye mutation. Using region-specific markers we find that, in the morphologically abnormal Sey/Sey optic vesicles, aspects of normal proximo-distal specification nevertheless persist, despite the complete absence of lens. Like the lens, the nasal cavities develop from ectodermal placodes that normally express Pax-6 mRNA, fail to form in Sey/Sey mice and show Pax-6-dependent Pax-6 mRNA regulation. Analysis of patterns of programmed cell death and absence of nasal region expression from an Msx-1 transgene in Sey/Sey embryos suggest a requirement for Pax-6 in the transition from presumptive nasal ectoderm to placode, and that Msx-1, or genes regulating it, are possible targets for Pax-6.


Development ◽  
1990 ◽  
Vol 110 (3) ◽  
pp. 949-954 ◽  
Author(s):  
N.A. Brown ◽  
A. McCarthy ◽  
L. Wolpert

Mutant iv/iv mice develop as if they have no sense of left and right, so the development of asymmetry is random: half normal, half as a mirror-image of normal, situs inversus. We have made aggregation chimeras of 8-cell stage iv/iv and +/+ embryos, transferred them into pseudopregnant mice, and examined their phenotype on day 10 of gestation. The contribution of mutant and wild-type cells to tissues of the embryo was estimated by strain-specific isozyme (GPI-1) analysis. We have also performed reciprocal embryo transfers, iv/iv blastocysts into +/+ mice, and vice versa. These transfers show that the development of handed asymmetry is determined by embryonic genotype, and is unaffected by the maternal environment (at least after day 3), or by the procedures of embryo collection, culture and transfer. Our observations on the development of 21 viable chimeric embryos show that neither iv/iv nor +/+ cells are dominant. All embryos (12) with less than 50% contribution of iv/iv cells to the heart developed with normal situs. Of 9 embryos with greater than 50% iv/iv cells, only 2 developed with inverted situs. These findings suggests that there was partial ‘rescue’ of embryos by some influence of normal over mutant cells. However, we cannot, statistically, exclude an alternative interpretation that cells are behaving autonomously. Interestingly, the embryos that developed with inverted situs were unique in having greater than two thirds contribution of iv/iv cells to both the heart and the visceral yolk-sac.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4483-4493 ◽  
Author(s):  
G. Campbell ◽  
A. Tomlinson

In the leg and wing imaginal discs of Drosophila, the expression domains of the homeobox genes aristaless (al) and Distal-less (Dll) are defined by the secreted signaling molecules Wingless (Wg) and Decapentaplegic (Dpp). Here, the roles played by al and Dll in patterning the legs and wings have been investigated through loss of function studies. In the developing leg, al is expressed at the presumptive tip and a molecularly defined null allele of al reveals that its only function in patterning the leg appears to be to direct the growth and differentiation of the structures at the tip. In contrast, Dll has previously been shown to be required for the development of all of the leg more distal than the coxa. Dll protein can be detected in a central domain in leg discs throughout most of larval development, and in mature discs this domain corresponds to the distal-most region of the leg, the tarsus and the distal tibia. Clonal analysis reveals that late in development these are the only regions in which Dll function is required. However, earlier in development Dll is required in more proximal regions of the leg suggesting it is expressed at high levels in these cells early in development but not later. This reveals a correlation between a temporal requirement for Dll and position along the proximodistal axis; how this may relate to the generation of the P/D axis is discussed. Dll is required in the distal regions of the leg for the expression of tarsal-specific genes including al and bric-a-brac. Dll mutant cells in the leg sort out from wild-type cells suggesting one function of Dll here is to control adhesive properties of cells. Dll is also required for the normal development of the wing, primarily for the differentiation of the wing margin.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4599-4609 ◽  
Author(s):  
S. Fuhrmann ◽  
E.M. Levine ◽  
T.A. Reh

The vertebrate eye develops from the neuroepithelium of the ventral forebrain by the evagination and formation of the optic vesicle. Classical embryological studies have shown that the surrounding extraocular tissues - the surface ectoderm and extraocular mesenchyme - are necessary for normal eye growth and differentiation. We have used explant cultures of chick optic vesicles to study the regulation of retinal pigmented epithelium (RPE) patterning and differentiation during early eye development. Our results show that extraocular mesenchyme is required for the induction and maintenance of expression of the RPE-specific genes Mitf and Wnt13 and the melanosomal matrix protein MMP115. In the absence of extraocular tissues, RPE development did not occur. Replacement of the extraocular mesenchyme with cranial mesenchyme, but not lateral plate mesoderm, could rescue expression of the RPE-marker Mitf. In addition to activating expression of RPE-specific genes, the extraocular mesenchyme inhibits the expression of the neural retina-specific transcription factor Chx10 and downregulates the eye-specific transcription factors Pax6 and Optx2. The TGF(β) family member activin can substitute for the extraocular mesenchyme by promoting expression of the RPE-specific genes and downregulating expression of the neural retina-specific markers. These data indicate that extraocular mesenchyme, and possibly an activin-like signal, pattern the domains of the optic vesicle into RPE and neural retina.


Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


Author(s):  
William Hill ◽  
Andreas Zaragkoulias ◽  
Beatriz Salvador-Barbero ◽  
Geraint J. Parfitt ◽  
Markella Alatsatianos ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


Sign in / Sign up

Export Citation Format

Share Document