scholarly journals Colony spreading of the gliding bacterium Flavobacterium johnsoniae in the absence of the motility adhesin SprB

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.

2009 ◽  
Vol 192 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
Ryan G. Rhodes ◽  
Mudiarasan Napoleon Samarasam ◽  
Abhishek Shrivastava ◽  
Jessica M. van Baaren ◽  
Soumya Pochiraju ◽  
...  

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Mutations in gldN cause a partial defect in gliding. A novel bacteriophage selection strategy was used to aid construction of a strain with a deletion spanning gldN and the closely related gene gldO in an otherwise wild-type F. johnsoniae UW101 background. Bacteriophage transduction was used to move a gldN mutation into F. johnsoniae UW101 to allow phenotypic comparison with the gldNO deletion mutant. Cells of the gldN mutant formed nonspreading colonies on agar but retained some ability to glide in wet mounts. In contrast, cells of the gldNO deletion mutant were completely nonmotile, indicating that cells require GldN, or the GldN-like protein GldO, to glide. Recent results suggest that Porphyromonas gingivalis PorN, which is similar in sequence to GldN, has a role in protein secretion across the outer membrane. Cells of the F. johnsoniae gldNO deletion mutant were defective in localization of the motility protein SprB to the cell surface, suggesting that GldN may be involved in secretion of components of the motility machinery. Cells of the gldNO deletion mutant were also deficient in chitin utilization and were resistant to infection by bacteriophages, phenotypes that may also be related to defects in protein secretion.


2008 ◽  
Vol 190 (8) ◽  
pp. 2851-2857 ◽  
Author(s):  
Shawn S. Nelson ◽  
Sreelekha Bollampalli ◽  
Mark J. McBride

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.


2000 ◽  
Vol 182 (4) ◽  
pp. 911-918 ◽  
Author(s):  
David W. Hunnicutt ◽  
Mark J. McBride

ABSTRACT The mechanism of bacterial gliding motility (active movement over surfaces without the aid of flagella) is not known. A large number of mutants of the gliding bacterium Flavobacterium johnsoniae(Cytophaga johnsonae) with defects in gliding motility have been previously isolated, and genetic techniques to analyze these mutants have recently been developed. We complemented a nongliding mutant of F. johnsoniae (UW102-99) with a library of wild-type DNA by using the shuttle cosmid pCP26. The complementing plasmid (pCP200) contained an insert of 26 kb and restored gliding motility to 4 of 50 independently isolated nongliding mutants. A 1.9-kb fragment which encompassed two genes, gldB andgldC, complemented all four mutants. An insertion mutation in gldB was polar on gldC, suggesting that the two genes form an operon. Disruption of the chromosomal copy ofgldB in wild-type F. johnsoniae UW101 eliminated gliding motility. Introduction of the gldBCoperon, or gldB alone, restored motility. gldBappears to be essential for F. johnsoniae gliding motility. It codes for a membrane protein that does not exhibit strong sequence similarity to other proteins in the databases. gldC is not absolutely required for gliding motility, but cells that do not produce GldC form colonies that spread less well than those of the wild type. GldC is a soluble protein and has weak sequence similarity to the fungal lectin AOL.


2004 ◽  
Vol 186 (8) ◽  
pp. 2295-2302 ◽  
Author(s):  
Mark J. McBride ◽  
Timothy F. Braun

ABSTRACT Cells of Flavobacterium johnsoniae glide rapidly over surfaces by an unknown mechanism. Seven genes (gldA, gldB, gldD, gldF, gldG, gldH, and ftsX) that are required for gliding motility have been described. Complementation of the nonmotile mutants UW102-41, UW102-85, and UW102-92 identified another gene, gldI, that is required for gliding motility. gldI mutants formed nonspreading colonies, and individual cells were completely nonmotile. They were also resistant to bacteriophages that infect wild-type cells, and they failed to digest chitin. Introduction of wild-type gldI on a plasmid restored colony spreading, cell motility, phage sensitivity, and the ability to digest chitin to the gldI mutants. gldI encodes a predicted 199-amino-acid protein that localized to the membrane fraction. Labeling studies with [3H]palmitate indicated that GldI is a lipoprotein. GldI is similar to peptidyl-prolyl cis/trans-isomerases of the FK506-binding protein family and may be involved in folding cell envelope protein components of the motility machinery.


2003 ◽  
Vol 185 (22) ◽  
pp. 6648-6657 ◽  
Author(s):  
Mark J. McBride ◽  
Timothy F. Braun ◽  
Jessica L. Brust

ABSTRACT Cells of Flavobacterium johnsoniae move rapidly over surfaces by gliding motility. The mechanism of this form of motility is not known. Six genes (gldA, gldB, gldD, gldF, gldG, and ftsX) that are required for gliding have been described. Tn4351 mutagenesis was used to identify another gene, gldH, which is required for cell movement. GldH mutants formed nonspreading colonies, and individual cells lacked the cell movements and ability to propel latex spheres along their surfaces that are characteristic of wild-type cells. gldH mutants also failed to digest chitin and were resistant to bacteriophages that infect wild-type cells. Introduction of pMM293, which carries wild-type gldH, restored to the gldH mutants colony spreading, cell motility, the ability to move latex spheres, phage sensitivity, and the ability to digest chitin. gldH encodes a predicted 141-amino-acid protein that localized to the membrane fraction. Labeling studies with [3H]palmitate demonstrated that GldH is a lipoprotein. GldB and GldD, which were previously described, also appear to be lipoproteins. GldH does not exhibit significant amino acid similarity to proteins of known function in the databases. Putative homologs of gldH of unknown function are found in motile (Cytophaga hutchinsonii) and apparently nonmotile (Bacteroides thetaiotaomicron, Bacteroides fragilis, Tannerella forsythensis, Porphyromonas gingivalis, and Prevotella intermedia) members of the Cytophaga-Flavobacterium-Bacteroides group.


2001 ◽  
Vol 183 (14) ◽  
pp. 4167-4175 ◽  
Author(s):  
David W. Hunnicutt ◽  
Mark J. McBride

ABSTRACT Cells of Flavobacterium johnsoniae move over surfaces by a process known as gliding motility. The mechanism of this form of motility is not known. Cells of F. johnsoniaepropel latex spheres along their surfaces, which is thought to be a manifestation of the motility machinery. Three of the genes that are required for F. johnsoniae gliding motility,gldA, gldB, and ftsX, have recently been described. Tn4351 mutagenesis was used to identify another gene, gldD, that is needed for gliding. Tn4351-induced gldD mutants formed nonspreading colonies, and cells failed to glide. They also lacked the ability to propel latex spheres and were resistant to bacteriophages that infect wild-type cells. Introduction of wild-type gldD into the mutants restored motility, ability to propel latex spheres, and sensitivity to bacteriophage infection. gldD codes for a cytoplasmic membrane protein that does not exhibit strong sequence similarity to proteins of known function. gldE, which lies immediately upstream ofgldD, encodes another cytoplasmic membrane protein that may be involved in gliding motility. Overexpression ofgldE partially suppressed the motility defects of agldB point mutant, suggesting that GldB and GldE may interact. GldE exhibits sequence similarity to Borrelia burgdorferi TlyC and Salmonella enterica serovar Typhimurium CorC.


2005 ◽  
Vol 187 (20) ◽  
pp. 6943-6952 ◽  
Author(s):  
Timothy F. Braun ◽  
Manjeet K. Khubbar ◽  
Daad A. Saffarini ◽  
Mark J. McBride

ABSTRACT Cells of Flavobacterium johnsoniae glide rapidly over surfaces. The mechanism of F. johnsoniae gliding motility is not known. Eight gld genes required for gliding motility have been described. Disruption of any of these genes results in complete loss of gliding motility, deficiency in chitin utilization, and resistance to bacteriophages that infect wild-type cells. Two modified mariner transposons, HimarEm1 and HimarEm2, were constructed to allow the identification of additional motility genes. HimarEm1 and HimarEm2 each transposed in F. johnsoniae, and nonmotile mutants were identified and analyzed. Four novel motility genes, gldK, gldL, gldM, and gldN, were identified. GldK is similar in sequence to the lipoprotein GldJ, which is required for gliding. GldL, GldM, and GldN are not similar in sequence to proteins of known function. Cells with mutations in gldK, gldL, gldM, and gldN were defective in motility and chitin utilization and were resistant to bacteriophages that infect wild-type cells. Introduction of gldA, gldB, gldD, gldFG, gldH, gldI, and gldJ and the region spanning gldK, gldL, gldM, and gldN individually into 50 spontaneous and chemically induced nonmotile mutants restored motility to each of them, suggesting that few additional F. johnsoniae gld genes remain to be identified.


2007 ◽  
Vol 189 (20) ◽  
pp. 7503-7506 ◽  
Author(s):  
Jun Liu ◽  
Mark J. McBride ◽  
Sriram Subramaniam

ABSTRACT Flavobacterium johnsoniae cells glide rapidly over surfaces by an as-yet-unknown mechanism. Using cryo-electron tomography, we show that wild-type cells display tufts of ∼5-nm-wide cell surface filaments that appear to be anchored to the inner surface of the outer membrane. These filaments are absent in cells of a nonmotile gldF mutant but are restored upon expression of plasmid-encoded GldF, a component of a putative ATP-binding cassette transporter.


2007 ◽  
Vol 73 (11) ◽  
pp. 3536-3546 ◽  
Author(s):  
Gary Xie ◽  
David C. Bruce ◽  
Jean F. Challacombe ◽  
Olga Chertkov ◽  
John C. Detter ◽  
...  

ABSTRACT The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-β-1,4-glucanases and β-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.


2020 ◽  
Vol 6 (10) ◽  
pp. eaay6616 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

The gliding bacterium Flavobacterium johnsoniae is known to have an adhesin, SprB, that moves along the cell surface on a spiral track. Following viscous shear, cells can be tethered by the addition of an anti-SprB antibody, causing spinning at 3 Hz. Labeling the type 9 secretion system (T9SS) with a YFP fusion of GldL showed a yellow fluorescent spot near the rotation axis, indicating that the motor driving the motion is associated with the T9SS. The distance between the rotation axis and the track (90 nm) was determined after adding a Cy3 label for SprB. A rotary motor spinning a pinion of radius 90 nm at 3 Hz would cause a spot on its periphery to move at 1.5 μm/s, the gliding speed. We suggest the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when this adhesin adheres to the solid substratum.


Sign in / Sign up

Export Citation Format

Share Document