scholarly journals Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip 1

Development ◽  
2021 ◽  
Author(s):  
Minkyoung Lee ◽  
Charles Betz ◽  
Jianmin Yin ◽  
Ilkka Paatero ◽  
Niels Schellinx ◽  
...  

Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveal distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tri-cellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function during junction formation and stabilization during sprouting angiogenesis.

2020 ◽  
Author(s):  
Minkyoung Lee ◽  
Charles Betz ◽  
Ilkka Paatero ◽  
Niels Schellinx ◽  
Jianmin Yin ◽  
...  

AbstractOrgan morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveal distinct requirements for Rasip1 during sprouting angiogenesis, vascular anastomosis and lumen formation. During angiogenic sprouting, Rasip1 is required for efficient cell pairing, which is essential for multicellular tube formation. High-resolution time-lapse analyses show that these cell pairing defects are caused by a destabilization of tricellular junctions suggesting that tri-cellular junctions may serve as a counterfort to tether sprouting endothelial cells during morphogenetic cell rearrangements. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function leads to junctional defects similar to those seen in rasip1 mutants. Analysis of radil-b single and rasip1/radil-b double mutants reveal distinct and overlapping functions of both proteins. While Rasip1 and Radil-b have similar functions during angiogenic sprouting, the junction formation during anastomosis may primarily depend on Rasip1.


2021 ◽  
Author(s):  
Maria P. Kotini ◽  
Miesje M. van der Stoel ◽  
Mitchell K. Han ◽  
Bettina Kirchmaier ◽  
Johan de Rooij ◽  
...  

AbstractBlood vessel morphogenesis is driven by coordinated endothelial cell behaviors, which depend on dynamic cell-cell interactions. Remodeling of endothelial cell-cell junctions promote morphogenetic cellular events while preserving vascular integrity. Here, we have analyzed the dynamics of endothelial cell-cell junctions during lumen formation in angiogenic sprouts. By live-imaging of the formation of intersegmental blood vessels in zebrafish, we demonstrate that lumen expansion is accompanied by the formation of transient finger-shaped junctions. Formation and maintenance of these junctional fingers are positively regulated by blood pressure whereas inhibition of blood flow prevents their formation. Using fluorescent reporters, we show that the tension-sensor Vinculin localizes to junctional fingers. Furthermore, loss of vinculin function, in vinculin a and -b double knockouts, prevents junctional finger formation in angiogenic sprouts, whereas endothelial expression of a vinculin transgene is sufficient to restore junctional fingers. Taken together, our findings suggest a mechanism in which lumen expansion during angiogenesis leads to an increase in junctional tension, which triggers recruitment of vinculin and formation of junctional fingers. We propose that endothelial cells may employ force-dependent junctional remodeling to react to changes in external forces to protect cell-cell contacts and to maintain vascular integrity during sprouting angiogenesis.


2001 ◽  
Vol 12 (11) ◽  
pp. 3465-3475 ◽  
Author(s):  
Bonnie L. Firestein ◽  
Christopher Rongo

Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Patrick Burgon ◽  
Julia Lockwood ◽  
Glenn Wells ◽  
Alexandre Blais

Approximately 116 unique mutations in the lamin A/C gene have been described to date that are associated with dilated cardiomyopathy. We recently reported the discovery of MLIP through its interaction with lamin A/C. MLIP is expressed ubiquitously and most abundantly in heart, skeletal and smooth muscle of amniotes (mammals, reptiles and birds) and has no paralogous homologue suggesting no functional redundancy. The MLIP gene encodes at least seven, alternatively spliced, LMNA-interacting factors that possess several structural motifs not found in any other protein. The MLIP isoforms pattern of expression differs between each of the tissues with heart being the most heterogeneous. Down-regulation of lamin A/C expression by shRNA results in the up-regulation and mis-localization of MLIP. In addition to interacting and co-localizing with lamin A/C we also demonstrated that MLIP localizes to micro-domains in the nucleus with promyelocytic leukemia protein (PML) in close proximity to chromatin. MLIP's biological function still remains elusive. Eight week old hemizygous MLIP null mice develop enlarged hearts with a significant increase in heart to body weights (MLIP+/+ 5.62mg/g vs MLIP+/- 10.73mg/g, p<0.0001 n=7) with an overall 30% increase in the anterior-posterior ventricle length of MLIP hearts while maintaining a normal body weight (Figure). Echocardiographic analysis of MLIP+/- mice revealed that their hearts as having a significant (p3.93mm with a significant (p=0.011, n=12) reduction of left ventricular fractional shorting (LVFS) 31% when compare to littermate controls. Histological analysis of the hearts showed no overt phenotype other than an overall increase in the size of the MLIP+/- hearts. The cellular source for the increase in heart size and mass remains to be determined if it is the product of an increase in the number of cardiomyocytes due to aberrant hyperplasia or an increase in cardiomyocyte size through cellular hypertrophy. In conclusion, MLIP is a newly discovered lamin interacting protein that may serve as a transcriptional regulator that impact genes involved in heart development, growth and function and provides a new signaling paradigm.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Show-Li Chen

Previously, we demonstrate a gene, nuclear receptor interaction protein (NRIP, also named DCAF6 or IQWD1) as a Ca2+- dependent calmodulin binding protein that can activate calcineurin phosphatase activity. Here, we found that α-actinin-2 (ACTN2), is one of NRIP-interacting proteins from the yeast two-hybrid system using NRIP as a prey. We further confirmed the direct bound between NRIP and ACTN2 using in vitro protein-protein interaction and in vivo co-immunoprecipitation assays. To further map the binding domain of each protein, the results showed the IQ domain of NRIP responsible for ACTN2 binding, and EF hand motif of ACTN2 responsible for NRIP bound. Due to ACTN2 is a biomarker of muscular Z-disc complex; we found the co-localization of NRIP and ACTN2 in cardiac tissues by immunofluorescence assays. Taken together, NRIP is a novel ACTN2-interacting protein. To investigate insights into in vivo function of NRIP, we generated conventional NRIP-null mice. The H&E staining results are shown in the hearts of NRIP KO mice are enlarged and dilated and the cell width of NRIP KO cardiomyocyte is increased. The EM of NRIP KO heart muscles reveal the reduction of I-band width and extension length of Z-disc in sarcomere structure; and the echocardiography shows the diminished fractional shortening in heart functions. Additionally, the calcium transient and sarcomere contraction length in cardiomyocytes of NRIP KO is weaker and shorter than wt; respectively. In conclusion, NRIP is a novel Z-disc protein and has function for maintenance of sarcomere integrity structure and function for calcium transient and muscle contraction.


2020 ◽  
Vol 10 ◽  
Author(s):  
Tiziana Annese ◽  
Roberto Tamma ◽  
Michelina De Giorgis ◽  
Domenico Ribatti

microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time.miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context.In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR.In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data.The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.


Biochemistry ◽  
2008 ◽  
Vol 47 (35) ◽  
pp. 9208-9219 ◽  
Author(s):  
Monimoy Banerjee ◽  
Chengdong Huang ◽  
Javier Marquez ◽  
Smita Mohanty

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jesús Gómez-Escudero ◽  
Cristina Clemente ◽  
Diego García-Weber ◽  
Rebeca Acín-Pérez ◽  
Jaime Millán ◽  
...  

Abstract Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs in pathophysiological contexts such as wound healing, cancer, and chronic inflammatory disease. During sprouting angiogenesis, endothelial tip and stalk cells coordinately remodel their cell-cell junctions to allow collective migration and extension of the sprout while maintaining barrier integrity. All these processes require energy, and the predominant ATP generation route in endothelial cells is glycolysis. However, it remains unclear how ATP reaches the plasma membrane and intercellular junctions. In this study, we demonstrate that the glycolytic enzyme pyruvate kinase 2 (PKM2) is required for sprouting angiogenesis in vitro and in vivo through the regulation of endothelial cell-junction dynamics and collective migration. We show that PKM2-silencing decreases ATP required for proper VE-cadherin internalization/traffic at endothelial cell-cell junctions. Our study provides fresh insight into the role of ATP subcellular compartmentalization in endothelial cells during angiogenesis. Since manipulation of EC glycolysis constitutes a potential therapeutic intervention route, particularly in tumors and chronic inflammatory disease, these findings may help to refine the targeting of endothelial glycolytic activity in disease.


2020 ◽  
Vol 117 (4) ◽  
pp. 2004-2013 ◽  
Author(s):  
Kenneth Kin Lam Wong ◽  
Ta-Wei Liu ◽  
Jessica M. Parker ◽  
Donald A. R. Sinclair ◽  
Yi-Yun Chen ◽  
...  

Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.


Sign in / Sign up

Export Citation Format

Share Document