scholarly journals The Complex Cell Cycle of the Dinoflagellate Protoctist Crypthecodinium Cohnii as Studied In Vivo and by Cytofluorimetry

1991 ◽  
Vol 100 (3) ◽  
pp. 675-682 ◽  
Author(s):  
YVONNE BHAUD ◽  
JEAN-MARIE SALMON ◽  
MARIE-ODILE SOYER-GOBILLARD

The complete cell cycle of the dinoflagellate Crypthecodinium cohnii Biecheler 1938 was observed in vivo in a synchronized heterogeneous population, after DAPI staining of DNA. In a given population, the relative nuclear DNA content in each class of cell was measured using a new numerical image-analysis method that takes into account the total fluorescence intensity (FI), area (A) and shape factor (SF). The visible degree of synchronization of the population was determined from the number of cells with a nuclear content of 1C DNA at ‘synchronization’, time 0. One method of synchronization (method 1), based on the adhesiveness of the cysts, gave no better than 50% synchronization of the population; method 2, based on swimming cells released from cysts cultured on solid medium, gave 73% of cells with the same nuclear DNA content. A scatter plot of data for FI versus A in the first few hours after time 0 showed that the actual degree of synchronization of the population was lower. The length of the C. cohnii cell cycle determined in vivo by light microscopy was 10, 16 or 24 h for vegetative cells giving two, four or eight daughter cells, respectively. Histograms based on the FI measurements showed that in an initially synchronized population observed for 20 h, the times for the first cell cycle were: G1 phase, 6 h; S phase, 1 h 30 min; G2+M, 1h 30 min, with the release of vegetative cells occurring 1 or 2h after the end of cytokinesis. The times for the second cell cycle were G1+S, 3h; G2+M, 2h. FI and A taken together, suggested that the S phase is clearly restricted, as in higher eukaryotes. A and SF, taken together, showed that the large nuclear areas were always in cysts with two or four daughter cells. FI and SF, taken together, showed that the second S phase always occurred after completion of the first nuclear division. Our data concerning the course of the cell cycle in C. cohnii are compared with those from earlier studies, and the control of the number of daughter cells is discussed; this does not depend on the ploidy of the mother cell.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Hua Deng

In this work we conducted a quantitative analysis of the nuclear DNA-content of developing sperm cells of the plant <em>Brassica campestris</em> L. The sperm cells were in young pollen grain, mature pollen grain and pollen tubes. When generative cells, at the pre-anthesis stage, split into two sperm cells, we have established that the newly-formed sperm cells begin to synthesize nuclear DNA in developing pollen grain of <em>B. campestris</em>. We measured this DNA-content during the development of sperm cells. The results indicate that during development, sperm cells of <em>B. campestris</em> have passed the G<sub>1</sub> phase of the cell cycle and entered the S phase, presumably then fusing with egg cells at a level of 2C, as is characteristic of G<sub>2</sub> type fertilization in angiosperms.


1986 ◽  
Vol 83 (1) ◽  
pp. 155-164
Author(s):  
J. Roth ◽  
G. Cleffmann

By combining cytophotometry with autoradiography, five stages of macronuclear anlagen can be discriminated by their DNA content until the end of the first cell cycle after conjugation in Tetrahymena. DNA increases from 2C to about 32C. Each S-phase is followed by a non-synthetic period. Comparing the mean nuclear DNA content after and before each S-phase revealed that 16C anlagen contain significantly less DNA than twice the amount of 8C anlagen. This is unlike the situation in other S-phases during which the amount of DNA is precisely doubled. In the second cell cycle after conjugation some of the cells increase their macronuclear G2 DNA content beyond the 64C stage, while the majority show a mean G2 content of about 64C.


Many components of cell and nuclear size and mass are correlated with nuclear DNA content in plants, as also are the durations and rates of such developmental processes as mitosis and meiosis. It is suggested that the multiple effects of the mass of nuclear DNA which affect all cells and apply throughout the life of the plant can together determine the minimum generation time for each species. The durations of mitosis and of meiosis are both positively correlated with nuclear DNA content and, therefore, species with a short minimum generation time might be expected to have a shorter mean cell cycle time and mean meiotic duration, and a lower mean nuclear DNA content, than species with a long mean minimum generation time. In tests of this hypothesis, using data collated from the literature, it is shown that the mean cell cycle time and the mean meiotic duration in annual species is significantly shorter than in perennial species. Furthermore, the mean nuclear DNA content of annual species is significantly lower than for perennial species both in dicotyledons and monocotyledons. Ephemeral species have a significantly lower mean nuclear DNA content than annual species. Among perennial monocotyledons the mean nuclear DNA content of species which can complete a life cycle within one year (facultative perennials) is significantly lower than the mean nuclear DNA content of those which cannot (obligate perennials). However, the mean nuclear DNA content of facultative perennials does not differ significantly from the mean for annual species. It is suggested that the effects of nuclear DNA content on the duration of developmental processes are most obvious during its determinant stages, and that the largest effects of nuclear DNA mass are expressed at times when development is slowest, for instance, during meiosis or at low temperature. It has been suggested that DNA influences development in two ways, directly through its informational content, and indirectly by the physical-mechanical effects of its mass. The term 'nucleotype' is used to describe those conditions of the nucleus which effect the phenotype independently of the informational content of the DNA. It is suggested that cell cycle time, meiotic duration, and minimum generation time are determined by the nucleotype. In addition, it may be that satellite DNA is significant in its nucleotypic effects on developmental processes.


1996 ◽  
Vol 8 (6) ◽  
pp. 935 ◽  
Author(s):  
AW Schuetz ◽  
DG Whittingham ◽  
R Snowden

The cell cycle characteristics of mouse cumulus granulosa cells were determined before, during and following their expansion and mucification in vivo and in vitro. Cumulus-oocyte complexes (COC) were recovered from ovarian follicles or oviducts of prepubertal mice previously injected with pregnant mare serum gonadotrophin (PMSG) or a mixture of PMSG and human chorionic gonadotrophin (PMSG+hCG) to synchronize follicle differentiation and ovulation. Cell cycle parameters were determined by monitoring DNA content of cumulus cell nuclei, collected under rigorously controlled conditions, by flow cytometry. The proportion of cumulus cells in three cell cycle-related populations (G0/G1; S; G2/M) was calculated before and after exposure to various experimental conditions in vivo or in vitro. About 30% of cumulus cells recovered from undifferentiated (compact) COC isolated 43-45 h after PMSG injections were in S phase and 63% were in G0/G1 (2C DNA content). Less than 10% of the cells were in the G2/M population. Cell cycle profiles of cumulus cells recovered from mucified COC (oviducal) after PMSG+hCG-induced ovulation varied markedly from those collected before hCG injection and were characterized by the relative absence of S-phase cells and an increased proportion of cells in G0/G1. Cell cycle profiles of cumulus cells collected from mucified COC recovered from mouse ovarian follicles before ovulation (9-10 h after hCG) were also characterized by loss of S-phase cells and an increased G0/G1 population. Results suggest that changes in cell cycle parameters in vivo are primarily mediated in response to physiological changes that occur in the intrafollicular environment initiated by the ovulatory stimulus. A similar lack of S-phase cells was observed in mucified cumulus cells collected 24 h after exposure in vitro of compact COC to dibutyryl cyclic adenosine monophosphate (DBcAMP), follicle-stimulating hormone or epidermal growth factor (EGF). Additionally, the proportion of cumulus cells in G2/M was enhanced in COC exposed to DBcAMP, suggesting that cell division was inhibited under these conditions. Thus, both the G1-->S-phase and G2-->M-phase transitions in the cell cycle appear to be amenable to physiological regulation. Time course studies revealed dose-dependent changes in morphology occurred within 6 h of exposure in vitro of COC to EGF or DBcAMP. Results suggest that the disappearance of the S-phase population is a consequence of a decline in the number of cells beginning DNA synthesis and exit of cells from the S phase following completion of DNA synthesis. Furthermore, loss of proliferative activity in cumulus cells appears to be closely associated with COC expansion and mucification, whether induced under physiological conditions in vivo or in response to a range of hormonal stimuli in vitro. The observations indicate that several signal-transducing pathways mediate changes in cell cycle parameters during cumulus cell differentiation.


2018 ◽  
Vol 23 (10) ◽  
pp. 1030-1039
Author(s):  
Damian J. Matuszewski ◽  
Carolina Wählby ◽  
Cecilia Krona ◽  
Sven Nelander ◽  
Ida-Maria Sintorn

Image-based analysis is an increasingly important tool to characterize the effect of drugs in large-scale chemical screens. Herein, we present image and data analysis methods to investigate population cell-cycle dynamics in patient-derived brain tumor cells. Images of glioblastoma cells grown in multiwell plates were used to extract per-cell descriptors, including nuclear DNA content. We reduced the DNA content data from per-cell descriptors to per-well frequency distributions, which were used to identify compounds affecting cell-cycle phase distribution. We analyzed cells from 15 patient cases representing multiple subtypes of glioblastoma and searched for clusters of cell-cycle phase distributions characterizing similarities in response to 249 compounds at 11 doses. We show that this approach applied in a blind analysis with unlabeled substances identified drugs that are commonly used for treating solid tumors as well as other compounds that are well known for inducing cell-cycle arrest. Redistribution of nuclear DNA content signals is thus a robust metric of cell-cycle arrest in patient-derived glioblastoma cells.


2015 ◽  
Vol 47 (3) ◽  
pp. 297-305 ◽  
Author(s):  
K. Marciniak ◽  
M. Olszewska ◽  
R. J. Osiecka ◽  
J. Białas

Among four species of <i>Angiospermae</i> with known nuclear DNA content (<i>Cucurbita pepo</i> - 2.6 pg, <i>Helianthus annuus</i> - 12.0 pg, <i>Vicia faba</i> — 38.0 pg, and <i>Tulipa kaufmanniana</i> - 93.7 pg) the cell growth in the intermitotic period of the cell cycle has been observed to be the fastest in <i>Vicia faba</i>, slower in <i>Helianthus annuus</i> and the slowest in <i>Cucurbita pepo</i> and <i>Tulipa kaufmanniana</i>.


Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 311-336
Author(s):  
Julia C. Chisholm ◽  
Martin H. Johnson ◽  
Paul D. Warren ◽  
Tom P. Fleming ◽  
Susan J. Pickering

We have attempted to reduce the developmental heterogeneity amongst populations of mouse blastocysts by synchronizing embryos to the first visible signs of blastocoel formation. Using embryos timed in this way, we have examined the extent of variation of inside and outside cell number and of inside cell size, nuclear DNA content and developmental potential, between and within embryos of a similar age postcavitation. The overall impression gained is one of wide heterogeneity in inside:outside cell number ratios and in cell cycling and its relation to cavitation among embryos of similar age postcavitation. However, the simplest explanation of our results suggests that cavitation generally begins at a time when most outside cells are in their sixth developmental cell cycle and that outside cells, as a population, are a little ahead of inside cells in their cell cycling. Additionally we present evidence that, within at least some individual inner cell masses (ICM), there is intraembryo variation in the time at which inside cell developmental potential becomes restricted.


1989 ◽  
Vol 9 (7) ◽  
pp. 2881-2889
Author(s):  
J Taljanidisz ◽  
J Popowski ◽  
N Sarkar

To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA.


Sign in / Sign up

Export Citation Format

Share Document