Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe

1993 ◽  
Vol 105 (4) ◽  
pp. 1095-1100 ◽  
Author(s):  
S.M. Byrne ◽  
C.S. Hoffman

An important eukaryotic signal transduction pathway involves the regulation of the effector enzyme adenylate cyclase, which produces the second messenger, cAMP. Previous genetic analyses demonstrated that glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene requires the function of adenylate cyclase, encoded by the git2 gene. As mutations in git2 and in six additional git genes are suppressed by exogenous cAMP, these ‘upstream’ git genes were proposed to act to produce a glucose-induced cAMP signal. We report here that assays of cAMP levels in wild-type and various mutant S. pombe cells, before and after exposure to glucose, show that this is the case. The data suggest that the cAMP signal results from the activation of adenylate cyclase. Therefore these ‘upstream’ git genes appear to encode a glucose-induced adenylate cyclase activation pathway. Assays of cAMP on a strain carrying a mutation in the git6 gene, which acts downstream of adenylate cyclase, indicate that git6 may function to feedback regulate adenylate cyclase activity. Thus git6 may encode a cAMP-dependent protein kinase.

Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 513-521
Author(s):  
Robert M Welton ◽  
Charles S Hoffman

Abstract The fission yeast Schizosaccharomyces pombe responds to environmental glucose by activating adenylate cyclase. The resulting cAMP signal activates protein kinase A (PKA). PKA inhibits glucose starvation-induced processes, such as conjugation and meiosis, and the transcription of the fbp1 gene that encodes the gluconeogenic enzyme fructose-1,6-bisphosphatase. We previously identified a collection of git genes required for glucose repression of fbp1 transcription, including pka1/git6, encoding the PKA catalytic subunit, git2/cyr1, encoding adenylate cyclase, and six “upstream” genes required for adenylate cyclase activation. The git8 gene, identical to gpa2, encodes the alpha subunit of a heterotrimeric guanine-nucleotide binding protein (Gα) while git5 encodes a Gβ subunit. Multicopy suppression studies with gpa2+ previously indicated that S. pombe adenylate cyclase activation may resemble that of the mammalian type II enzyme with sequential activation by Gα followed by βγ. We show here that an activated allele of gpa2 (gpa2R176H, carrying a mutation in the coding region for the GTPase domain) fully suppresses mutations in git3 and git5, leading to a refinement in our model. We describe the cloning of git3 and show that it encodes a putative seven-transmembrane G protein-coupled receptor. A git3 deletion confers the same phenotypes as deletions of other components of the PKA pathway, including a germination delay, constitutive fbp1 transcription, and starvation-independent conjugation. Since the git3 deletion is fully suppressed by the gpa2R176H allele with respect to fbp1 transcription, git3 appears to encode a G protein-coupled glucose receptor responsible for adenylate cyclase activation in S. pombe.


1985 ◽  
Vol 248 (6) ◽  
pp. E633-E647 ◽  
Author(s):  
J. H. Exton

Epinephrine and norepinephrine exert many important actions by interacting with alpha 1- and alpha 2-adrenergic receptors in their target cells. Activation of alpha 2-adrenergic receptors causes platelet aggregation and other inhibitory cellular responses. Some of these responses are attributable to a decrease in cAMP due to inhibition of adenylate cyclase. Activation of alpha 2-adrenergic receptors promotes their coupling to an inhibitory guanine nucleotide binding protein (Ni). This coupling promotes the binding of GTP to Ni, causing it to dissociate into subunits. This results in inhibition of the catalytic component of adenylate cyclase. Activation of alpha 1-adrenergic receptors stimulates the contraction of most smooth muscles and alters secretion and metabolism in several tissues. The primary event is a breakdown of phosphatidylinositol-4,5-bisphosphate in the plasma membrane to produce two intracellular "messengers": myo-inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG). IP3 causes the release of Ca2+ from endoplasmic reticulum, producing a rapid rise in cytosolic Ca2+. Ca2+ binds to the regulatory protein calmodulin, and the resulting complex interacts with specific or multifunctional calmodulin-dependent protein kinases and other calmodulin-responsive proteins, altering their activities and thereby producing a variety of physiological responses. DAG also produces effects by activating a Ca2+-phospholipid-dependent protein kinase (protein kinase C) that phosphorylates and alters the activity of certain cellular proteins. Frequently there is synergism between the IP3 and DAG mechanisms.


Genetics ◽  
1994 ◽  
Vol 138 (1) ◽  
pp. 39-45 ◽  
Author(s):  
M Nocero ◽  
T Isshiki ◽  
M Yamamoto ◽  
C S Hoffman

Abstract In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, adenylate cyclase enzymatic activity is regulated by heterotrimeric guanine nucleotide-binding proteins (G proteins). In the budding yeast Saccharomyces cerevisiae, adenylate cyclase enzymatic activity is regulated by monomeric, guanine nucleotide-binding Ras proteins. We show here that git8 is identical to the gpa2 gene that encodes a protein homologous to the alpha subunit of a G protein. Mutations in two additional genes, git3 and git5 are suppressed by gpa2+ in high copy number. Furthermore, a mutation in either git3 or git5 has an additive effect in strains deleted for gpa2 (git8), as it significantly increases expression of an fbp1-lacZ reporter gene. Therefore, git3 and git5 appear to act either in concert with or independently from gpa2 (git8) to regulate adenylate cyclase activity.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1463-1471 ◽  
Author(s):  
Sheila Landry ◽  
Maria T Pettit ◽  
Ethel Apolinario ◽  
Charles S Hoffman

Abstract Fission yeast adenylate cyclase is activated by the gpa2 Gα subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gβ subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Gα involved in the pheromone response pathway. While 43% identical to mammalian Gβ's, the git5 protein lacks the amino-terminal coiled-coil found in other Gβ subunits, yet the gene possesses some of the coding capacity for this structure 5′ to its ORF. Although both gpa2 (Gα) and git5 (Gβ) are required for adenylate cyclase activation, only gpa2 is needed to maintain basal cAMP levels. Strains bearing a git5 disruption are derepressed for fbp1 transcription and sexual development even while growing in a glucose-rich environment, although fbp1 derepression is half that observed in gpa2 deletion strains. Multicopy gpa2 partially suppresses the loss of git5, while the converse is not true. These data suggest that Gβ is required for activation of adenylate cyclase either by promoting the activation of Gα or by independently activating adenylate cyclase subsequent to Gα stimulation as seen in type II mammalian adenylate cyclase activation.


1991 ◽  
Vol 11 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Setsuro Ibayashi ◽  
Al C. Ngai ◽  
Joseph R. Meno ◽  
H. Richard Winn

We utilized the closed window technique to study the in vivo responses of rat pial arterioles to superfused adenosine agonists. Adenosine and its analogs dilated pial arterioles and exhibited the following order of potency: 5′ N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine (2-CADO) > adenosine = R-N6-phenylisopropyladenosine ( R-PIA) = S-PIA > N6-cyclohexyladenosine (CHA). This potency profile suggests that cerebral vasodilation is mediated through the A2 receptor. Forskolin (10−9 M) potentiated the vasodilation caused by 10−6 M NECA, thus implicating adenylate cyclase activation during NECA-induced vasodilation and providing further support for involvement of the A2 receptor.


1993 ◽  
Vol 113 (sup501) ◽  
pp. 76-79 ◽  
Author(s):  
Katsumi Doi ◽  
Nozomu Mori ◽  
Toru Matsunaga

Sign in / Sign up

Export Citation Format

Share Document