Orientation of macromolecules in the walls of elongating carrot cells

1993 ◽  
Vol 106 (4) ◽  
pp. 1347-1356
Author(s):  
M.C. McCann ◽  
N.J. Stacey ◽  
R. Wilson ◽  
K. Roberts

When round cells from a carrot cell suspension culture are diluted into fresh medium without auxin, the cells elongate to almost 50 times their original diameter within three days. This process of elongation is accompanied by changes in both the composition and the orientation of cell wall polymers. We have obtained information on the orientation of wall polymers in elongating cells by two complementary techniques, one using microscopy and one spectroscopy. Images obtained by the fast-freeze, deep-etch, rotary-shadowed replica technique show that walls of round carrot cells have no net orientation of cellulose microfibrils, and that many thin fibres can be seen cross-linking microfibrils. Walls of elongated carrot cells, in contrast, show a marked net orientation of microfibrils at right angles to the axis of elongation. Fourier Transform Infrared (FTIR) spectra obtained from defined areas of single cell walls show that walls of round carrot cells contain more protein, esters and phenolics in a given area (10 microns × 10 microns) than walls of elongated carrot cells, that contain proportionally more carbohydrate. The orientation of particular functional groups, with respect to the direction of elongation of the cell, can be determined by inserting a polariser into the path of the infrared beam, before it passes through a cell wall sample mounted on the stage of the microscope accessory. In the walls of elongated cells, ester bands, amide bands characteristic of proteins, and stretching frequencies in the carbohydrate region of the spectrum all show a net orientation transverse to the long axis of the cells. In the walls of round carrot cells, however, there is no such net orientation of polymers. Spectra obtained from 25 microns-thick fresh sections of the etiolated stem of a carrot seedling show that different wall components are polarised in different tissue types. These techniques have therefore enabled us to define differences in both the composition and the architecture of walls of elongating cells at the level of a single cell, and to suggest that polymers not previously thought to be ordered, such as pectin and protein, are strictly oriented in some wall types.

1967 ◽  
Vol 58 (2) ◽  
pp. 541-544 ◽  
Author(s):  
F. C. Steward ◽  
H. W. Israel ◽  
M. M. Salpeter

The cell walls of members of the Vaucheriaceae and Saprolegniaceae have been examined by X-ray analysis and electron microscopy, and their composition determined by hydrolysis and paper partition chromatography of the hydrolysates. Both differences and similarities between the members of these two species examined are found to supplement the comparative morphological and physiological information at present available. Saprolegnia , Achlya , Brevilegnia and Dictyuchus among the Saprolegniaceae possess hot-water soluble polysaccharides containing glucose residues only. This polysaccharide is not crystallographically identical with the polysaccharide found in Vaucheria sessilis with a similar solubility. The members of the Saprolegniaceae contain large amounts of alkali-soluble polysaccharides in contrast with the negligible amount found in V. sessilis . These polysaccharides are only weakly crystalline, but the indications are that the same polysaccharides may occur through­out the Saprolegniaceae. The alkali-insoluble wall material of Vaucheria species consists of highly crystalline native cellulose with large, apparently randomly arranged, microfibrils. The hydrolysate of this material contains ribose, xylose and arabinose in addition to glucose, presumably representing strongly bound pentosans. Native cellulose also occurs in the Saprolegniaceae but only in small proportion. The bulk of the alkali-insoluble fraction in the walls of these fungi appears amorphous in the electron microscope and is only weakly crystalline. It consists of one or m ore substances containing glucose, mannose, ribose and possibly other sugars together with traces of glucosamine. These substances presumably cover the cellulose microfibrils. The total quantity of non-cellulosic polysaccharide in the Saprolegniaceae approaches 85% of the total wall weight in contrast with the situation in Vaucheria where the cellulose alone approaches 90% of the total cell wall. Dichotomosiphon is unique among the organism s studied in this paper, in possessing a cell wall entirely soluble in alkali and composed of approximately equal quantities of glucose and xylose. The crystalline component is aβ-1,3-linked xylan, as already reported for some of the Siphonales (closely related algae) by Frei & Preston.


1999 ◽  
Vol 26 (5) ◽  
pp. 325-331 ◽  
Author(s):  
Dominique M.R Georget ◽  
Paul Cairns ◽  
Andrew C Smith ◽  
Keith W Waldron

1998 ◽  
Vol 315 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D.M.R Georget ◽  
A.C Smith ◽  
K.W Waldron

2021 ◽  
Author(s):  
Feiyang Ma ◽  
Patrice A Salomé ◽  
Sabeeha S Merchant ◽  
Matteo Pellegrini

Abstract The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described transcriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communities. Second, scRNA-seq successfully separated single cells into non-overlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosynthesis and cell division to economize resources. Notably, these groups of cells recapitulated known patterns observed with bulk RNA-seq, but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk RNA-seq data represent an average of typically hidden heterogeneity in the population.


Holzforschung ◽  
2020 ◽  
Vol 74 (12) ◽  
pp. 1079-1087 ◽  
Author(s):  
Fei Guo ◽  
Clemens M. Altaner ◽  
Michael C. Jarvis

AbstractWhen wood is split or cut along the grain, a reduction in tensile stiffness has been observed. The averaged mechanical properties of wood samples, veneers or splinters therefore change when their thickness is less than about 1 mm. The loss of stiffness increases as the thickness approaches that of a single cell. The mechanism of the effect depends on whether the longitudinal fission plane is between or through the cells. Isolated single cells are a model for fission between cells. Each cell within bulk wood is prevented from twisting by attachment to its neighbours. Separation of adjacent cells lifts this restriction on twisting and facilitates elongation as the cellulose microfibrils reorientate towards the stretching direction. In contrast when the wood is cut or split along the centre of the cells, it appears that co-operative action by the S1, S2 and S3 cell-wall layers in resisting tensile stress may be disrupted. Since much of what is known about the nanoscale mechanism of wood deformation comes from experiments on thin samples, caution is needed in applying this knowledge to structural-sized timber. The loss of stiffness at longitudinal fracture faces may augment the remarkable capacity of wood to resist fracture by deflecting cracks into the axial plane. These observations also point to mechanisms for enhancing toughness that are unique to wood and have biomimetic potential for the design of composite materials.


1995 ◽  
Vol 131 (2) ◽  
pp. 297-310 ◽  
Author(s):  
E Harsay ◽  
A Bretscher

Saccharomyces cerevisiae mutants that have a post-Golgi block in the exocytic pathway accumulate 100-nm vesicles carrying secretory enzymes as well as plasma membrane and cell-wall components. We have separated the vesicle markers into two groups by equilibrium isodensity centrifugation. The major population of vesicles contains Bg12p, an endoglucanase destined to be a cell-wall component, as well as Pma1p, the major plasma membrane ATPase. In addition, Snc1p, a synaptobrevin homologue, copurifies with these vesicles. Another vesicle population contains the periplasmic enzymes invertase and acid phosphatase. Both vesicle populations also contain exoglucanase activity; the major exoglucanase normally secreted from the cell, encoded by EXG1, is carried in the population containing periplasmic enzymes. Electron microscopy shows that both vesicle groups have an average diameter of 100 nm. The late secretory mutants sec1, sec4, and sec6 accumulate both vesicle populations, while neither is detected in wild-type cells, early sec mutants, or a sec13 sec6 double mutant. Moreover, a block in endocytosis does not prevent the accumulation of either vesicle species in an end4 sec6 double mutant, further indicating that both populations are of exocytic origin. The accumulation of two populations of late secretory vesicles indicates the existence of two parallel routes from the Golgi to the plasma membrane.


Author(s):  
Feiyang Ma ◽  
Patrice A. Salomé ◽  
Sabeeha S. Merchant ◽  
Matteo Pellegrini

ABSTRACTThe photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of the facility with which it can be cultured in the laboratory. Genomic and systems biology approaches have previously been used to describe how the transcriptome responds to environmental changes, but this analysis has been limited to bulk data, representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing in the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample algae communities in the wild. Second, scRNA-seq successfully separated single cells into non-overlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest cell division to economize resources. Notably, these groups of cells recapitulated known patterns observed with bulk RNA-seq, but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We propose that bulk RNA-seq data represent an average of varied cell states that hides underappreciated heterogeneity.One-sentence summaryWe show that single-cell RNA-seq (scRNA-seq) can be applied to Chlamydomonas cultures to reveal the that heterogenity in bulk cultures is largely driven by diurnal cycle phasesThe author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Matteo Pellegrini ([email protected])


2011 ◽  
Vol 9 (69) ◽  
pp. 640-647 ◽  
Author(s):  
Yael Abraham ◽  
Carmen Tamburu ◽  
Eugenia Klein ◽  
John W. C. Dunlop ◽  
Peter Fratzl ◽  
...  

The sessile nature of plants demands the development of seed-dispersal mechanisms to establish new growing loci. Dispersal strategies of many species involve drying of the dispersal unit, which induces directed contraction and movement based on changing environmental humidity. The majority of researched hygroscopic dispersal mechanisms are based on a bilayered structure. Here, we investigate the motility of the stork's bill ( Erodium ) seeds that relies on the tightening and loosening of a helical awn to propel itself across the surface into a safe germination place. We show that this movement is based on a specialized single layer consisting of a mechanically uniform tissue. A cell wall structure with cellulose microfibrils arranged in an unusually tilted helix causes each cell to spiral. These cells generate a macroscopic coil by spiralling collectively. A simple model made from a thread embedded in an isotropic foam matrix shows that this cellulose arrangement is indeed sufficient to induce the spiralling of the cells.


Sign in / Sign up

Export Citation Format

Share Document