Transport of sphingomyelin to the cell surface is inhibited by brefeldin A and in mitosis, where C6-NBD-sphingomyelin is translocated across the plasma membrane by a multidrug transporter activity

1997 ◽  
Vol 110 (1) ◽  
pp. 75-83 ◽  
Author(s):  
A. van Helvoort ◽  
M.L. Giudici ◽  
M. Thielemans ◽  
G. van Meer

Sphingomyelin is a major lipid of the mammalian cell surface. The view that sphingomyelin, after synthesis in the Golgi lumen, reaches the outer leaflet of the plasma membrane on the inside of carrier vesicles has been challenged by inconsistencies in the results of transport studies. To investigate whether an alternative pathway to the cell surface exists for sphingomyelin, brefeldin A and mitotic cells were used to block vesicular traffic between the Golgi complex and the plasma membrane. Exogenous sphingomyelinase was applied in the cold to assay for the presence of sphingomyelin on the surface of CHO cells. Newly synthesized radiolabeled sphingomyelin was found to equilibrate with cell surface sphingomyelin within 1.5 hours at 37 degrees C. Brefeldin A and mitosis inhibited this transport but, surprisingly, not the surface appearance of the short-chain sphingomyelin analog N-6[7-nitro-2,1,3-benzoxadiazol-4-yl]aminohexanoyl(C6-NBD)-sphingo myelin as assayed by depletion of this lipid in the medium by the scavenger albumin. Transport of C6-NBD-sphingomyelin in the presence of brefeldin A was blocked by cyclosporin A and PSC 833, inhibitors of the multidrug resistance P-glycoprotein. The same was observed in HepG2 and HeLa cells, and for short-chain glucosylceramide, which demonstrates the general nature of the transporter-dependent sphingolipid translocation across the plasma membrane.

2004 ◽  
Vol 72 (12) ◽  
pp. 6826-6835 ◽  
Author(s):  
Ken Teter ◽  
Michael G. Jobling ◽  
Randall K. Holmes

ABSTRACT Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic A1 polypeptide of CT (CTA1) then crosses the ER membrane, enters the cytosol, ADP-ribosylates the stimulatory α subunit of the heterotrimeric G protein (Gsα) at the cytoplasmic face of the plasma membrane, and activates adenylate cyclase. The cytosolic pool of CTA1 may reach the plasma membrane and its Gsα target by traveling on anterograde-directed transport vesicles. We examined this possibility with the use of a plasmid-based transfection system that directed newly synthesized CTA1 to either the ER lumen or the cytosol of CHO cells. Such a system allowed us to bypass the CT retrograde trafficking itinerary from the cell surface to the ER. Previous work has shown that the ER-localized pool of CTA1 is rapidly exported from the ER to the cytosol. Expression of CTA1 in either the ER or the cytosol led to the activation of Gsα, and Gsα activation was not inhibited in transfected cells exposed to drugs that inhibit vesicular traffic. Thus, anterograde transport from the ER to the plasma membrane is not required for the cytotoxic action of CTA1.


1995 ◽  
Vol 310 (1) ◽  
pp. 271-278 ◽  
Author(s):  
L Uhlin-Hansen ◽  
M Yanagishita

Rat ovarian granulosa cells were labelled with [35S]sulphate for 0.5-20 h and chased in the presence or absence of 1-2 micrograms/ml of brefeldin A (BFA) for up to 21 h. Heparan [35S]sulphate (HS) proteoglycans from the culture medium, plasma membrane and intracellular fractions were then analysed by gel chromatography. In the absence of BFA, about 85% of the plasma membrane-associated HS proteoglycans were endocytosed and subsequently degraded intracellularly. Recirculation of the HS proteoglycans between the intracellular pool and the cell surface was not observed. Exposing the cells to BFA for less than 1 h did not influence the turnover of the HS proteoglycans, whereas the effect of the drug on the Golgi functions reached a maximum in approx. 10 min. When the cells were treated with BFA for more than 1-2 h, the rate of endocytosis of HS proteoglycans was reduced to about 50% of the control. The delivery of endocytosed HS proteoglycans to lysosomes were not affected by the drug. Cycloheximide also reduced the endocytosis of HS proteoglycans, but not as much as BFA, indicating that the inhibitory effect of BFA can be only partly accounted for by a block of protein transport from the endoplasmic reticulum to the plasma membrane. In contrast with the endocytosis of HS proteoglycans, neither that of 125I-transferrin, known to be mediated by clathrin-coated vesicles, nor that of 125I-ricin, a marker molecule for bulk endocytosis, was affected by BFA. The half-life of 125I-transferrin and 125I-ricin in the plasma membrane was about 10 and 25 min respectively compared with about 5 h for the HS proteoglycans. Altogether, these results indicate that the endocytosis of plasma-membrane-associated HS proteoglycans is mediated by different mechanisms than the endocytosis of most other cell-surface proteins. Further, the mechanisms involved in the endocytosis of HS proteoglycans are sensitive to BFA.


1999 ◽  
Vol 112 (3) ◽  
pp. 415-422 ◽  
Author(s):  
R.J. Raggers ◽  
A. van Helvoort ◽  
R. Evers ◽  
G. van Meer

Recently, we have provided evidence that the ABC-transporter MDR1 P-glycoprotein translocates analogs of various lipid classes across the apical plasma membrane of polarized LLC-PK1 cells transfected with MDR1 cDNA. Here, we show that expression of the basolateral ABC-transporter MRP1 (the multidrug resistance protein) induced lipid transport to the exoplasmic leaflet of the basolateral plasma membrane of LLC-PK1 cells at 15 degreesC. C6-NBD-glucosylceramide synthesized on the cytosolic side of the Golgi complex, but not C6-NBD-sphingomyelin synthesized in the Golgi lumen, became accessible to depletion by BSA in the basal culture medium. This suggests the absence of vesicular traffic and direct translocation of C6-NBD-glucosylceramide by MRP1 across the basolateral membrane. In line with this, transport of the lipid to the exoplasmic leaflet depended on the intracellular glutathione concentration and was inhibited by the MRP1-inhibitors sulfinpyrazone and indomethacin, but not by the MDR1 P-glycoprotein inhibitor PSC 833. In contrast to the broad substrate specificity of the MDR1 P-glycoprotein, MRP1 selectively transported C6-NBD-glucosylceramide and C6-NBD-sphingomyelin, the latter only when it was released from the Golgi lumen by brefeldin A. This shows the specific nature of the lipid translocation. We conclude that the transport activity of MDR1 P-glycoprotein and MRP1 must be taken into account in studies on the transport of lipids to the cell surface.


1995 ◽  
Vol 108 (6) ◽  
pp. 2175-2186 ◽  
Author(s):  
J. Timar ◽  
R. Bazaz ◽  
V. Kimler ◽  
M. Haddad ◽  
D.G. Tang ◽  
...  

In metastatic B16a murine melanoma cells, alpha IIb beta 3 integrin was shown to be one of the key adhesion molecules responsible for matrix adhesion and spreading. Upon stimulation, alpha IIb beta 3 can be upregulated at the cell surface due to translocation of the receptor to the plasma membrane from an intracellular pool. Here we have characterized this integrin pool as a tubulovesicular structure (TVS) corresponding to endosomes. TVS was found to be associated temporarily with microtubules and intermediate filaments especially after protein kinase C (PKC) stimulation with a lipoxygenase metabolite of arachidonic acid, 12-(S)-hydroxyeicosatetraenoic acid [12-(S)-HETE]. After PKC stimulation, the predominantly vesicular TVS became elongated and alpha IIb beta 3 appeared at the apical plasma membrane and microvilli. Disruption of either the microtubules or intermediate filaments prevented the 12-(S)-HETE effect both on vesicular to tubular transition of TVS as well as on surface expression of this integrin. The connection with the Golgi system of the integrin-containing TVS was proved by a Golgi-inhibitor (brefeldin A) pretreatment, which prevented the PKC-stimulation-induced TVS elongation and subsequent receptor-upregulation at the cell surface. After a soluble ligand binding (mAb to the alpha IIb beta 3 complex) the surface receptor endocytosed back to the TVS indicating the presence of a dynamic, cytoskeleton associated integrin pool in melanoma cells.


2007 ◽  
Vol 408 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Gabriele Zanchetti ◽  
Paolo Colombi ◽  
Marta Manzoni ◽  
Luigi Anastasia ◽  
Luigi Caimi ◽  
...  

Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell adhesion, recognition and differentiation. At the moment, no detailed studies concerning the subcellular localization of NEU3 are available, and the mechanism of its association with cellular membranes is still unknown. In the present study, we have demonstrated that sialidase NEU3, besides its localization at the plasma membrane, is present in intracellular structures at least partially represented by a subset of the endosomal compartment. Moreover, we have shown that NEU3 present at the plasma membrane is internalized and locates then to the recycling endosomal compartment. The enzyme is associated with the outer leaflet of the plasma membrane, as shown by selective cell-surface protein biotinylation. This evidence is in agreement with the ability of NEU3 to degrade gangliosides inserted into the plasma membrane of adjacent cells. Moreover, the mechanism of the protein association with the lipid bilayer was elucidated by carbonate extraction. Under these experimental conditions, we have succeeded in solubilizing NEU3, thus demonstrating that the enzyme is a peripheral membrane protein. In addition, Triton X-114 phase separation demonstrates further the hydrophilic nature of the protein. Overall, these results provide important information about the biology of NEU3, the most studied member of the mammalian sialidase family.


2018 ◽  
Author(s):  
Sarah E Stewart ◽  
Avraham Ashkenazi ◽  
Athena Williamson ◽  
David C Rubinsztein ◽  
Kevin Moreau

AbstractAnnexins are phospholipid binding proteins that somehow translocate from the inner leaflet of the plasma membrane to the outer leaflet. For example, Annexin A2 is known to localise to the outer leaflet of the plasma membrane (cell surface) where it is involved in plasminogen activation leading to fibrinolysis and cell migration, among other functions. Despite having well described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that phospholipid flipping activity is crucial for the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (anoctamin-6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid flipping.


2003 ◽  
Vol 160 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Ian A. Prior ◽  
Cornelia Muncke ◽  
Robert G. Parton ◽  
John F. Hancock

Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.


1995 ◽  
Vol 128 (6) ◽  
pp. 1043-1053 ◽  
Author(s):  
K Fiedler ◽  
F Lafont ◽  
R G Parton ◽  
K Simons

The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, is a new isoform of the epithelial specific annexin XIII sub-family which includes the previously described intestine-specific annexin (annexin XIIIa; Wice, B. M., and J. I. Gordon. 1992. J. Cell Biol. 116:405-422). Annexin XIIIb differs from annexin XIIIa in that it contains a unique insert of 41 amino acids in the NH2 terminus and is exclusively expressed in dog intestine and kidney. Immunofluorescence microscopy demonstrated that annexin XIIIb was localized to the apical plasma membrane and underlying punctate structures. Since annexins have been suggested to play a role in membrane-membrane interactions in exocytosis and endocytosis, we investigated whether annexin XIIIb is involved in delivery to the apical cell surface. To this aim we used permeabilized MDCK cells and a cytosol-dependent in vitro transport assay. Antibodies specific for annexin XIIIb significantly inhibited the transport of influenza virus hemagglutinin from the TGN to the apical plasma membrane while the transport of vesicular stomatitis virus glycoprotein to the basolateral cell surface was unaffected. We propose that annexin XIIIb plays a role in vesicular transport to the apical plasma membrane in MDCK cells.


1991 ◽  
Vol 112 (6) ◽  
pp. 1117-1131 ◽  
Author(s):  
R Bowser ◽  
P Novick

SEC15 encodes a 116-kD protein that is essential for vesicular traffic from the Golgi apparatus to the cell surface in yeast. Although the sequence predicts a largely hydrophilic protein, a portion (23%) of Sec15p is found in association with the plasma membrane. The remainder is not associated with a membrane but is found in a 19.5S particle which is not dissociated by 0.5 M NaCl. Sec15p may attach directly to the plasma membrane since it is not found on the Golgi apparatus nor on the secretory vesicle precursors to the plasma membrane. Loss of function of most of the late-acting sec gene products does not alter the distribution of Sec15p. However, the sec8-9 mutation and to a lesser extent the sec10-2 mutation result in a shift of Sec15p to the plasma membrane, suggesting a role for these gene products in the regulation of the Sec15p membrane attachment/detachment processes. Depletion of Sec15p by repression of synthesis indicates that the plasma membrane bound pool is the most stable. During the course of these studies we have found that two activities associated with the yeast Golgi apparatus, Kex2 endopeptidase and GDPase, are in separable subcompartments.


2000 ◽  
Vol 20 (7) ◽  
pp. 2475-2487 ◽  
Author(s):  
Ann Apolloni ◽  
Ian A. Prior ◽  
Margaret Lindsay ◽  
Robert G. Parton ◽  
John F. Hancock

ABSTRACT Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15°C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway.


Sign in / Sign up

Export Citation Format

Share Document