Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation

1997 ◽  
Vol 110 (15) ◽  
pp. 1805-1812 ◽  
Author(s):  
M.J. Moser ◽  
M.R. Flory ◽  
T.N. Davis

The essential calmodulin genes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe were precisely replaced with genes encoding fusions between calmodulin and the green fluorescent protein (GFP). In living budding yeast the GFP-calmodulin fusion protein (GFP-Cmd1p) localized simultaneously to sites of cell growth and to the spindle pole body (SPB), the yeast analog of the centrosome. Having demonstrated proper localization of GFP-calmodulin in budding yeast, we examined the localization of a fusion between GFP and calmodulin (GFP-Camlp) in fission yeast, where calmodulin had not been localized by any method. We find GFP-Camlp also localizes both to sites of polarized cell growth and to the fission yeast SPB. The localization of calmodulin to the SPB by GFP fusion was confirmed by indirect immunofluorescence. Antiserum to S. pombe calmodulin labeled the ends of the mitotic spindle stained with anti-tubulin antiserum. This pattern was identical to that seen using antiserum to Sad1p, a known SPB component. We then characterized the defects in a temperature-sensitive S. pombe calmodulin mutant. Mutant cam1-E14 cells synchronized in S phase completed DNA synthesis, but lost viability during transit of mitosis. Severe defects in chromosome segregation, including hypercondensation, fragmentation, and unequal allocation of chromosomal material were observed. Immunofluorescence analysis of tubulin revealed a population of cells containing either broken or mislocalized mitotic spindles, which were never observed in wild-type cells. Taken together with the subcellular localization of calmodulin, the observed spindle and chromosome segregation defects suggest that calmodulin performs an essential role during mitosis at the fission yeast SPB.

2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


2014 ◽  
Vol 25 (18) ◽  
pp. 2735-2749 ◽  
Author(s):  
I-Ju Lee ◽  
Ning Wang ◽  
Wen Hu ◽  
Kersey Schott ◽  
Jürg Bähler ◽  
...  

Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.


2018 ◽  
Vol 29 (15) ◽  
pp. 1798-1810
Author(s):  
Meenakshi Agarwal ◽  
Hui Jin ◽  
Melainia McClain ◽  
Jinbo Fan ◽  
Bailey A. Koch ◽  
...  

The budding yeast centrosome, often called the spindle pole body (SPB), nucleates microtubules for chromosome segregation during cell division. An appendage, called the half bridge, attaches to one side of the SPB and regulates SPB duplication and separation. Like DNA, the SPB is duplicated only once per cell cycle. During meiosis, however, after one round of DNA replication, two rounds of SPB duplication and separation are coupled with homologue segregation in meiosis I and sister-chromatid segregation in meiosis II. How SPB duplication and separation are regulated during meiosis remains to be elucidated, and whether regulation in meiosis differs from that in mitosis is unclear. Here we show that overproduction of the half-bridge component Kar1 leads to premature SPB separation during meiosis. Furthermore, excessive Kar1 induces SPB overduplication to form supernumerary SPBs, leading to chromosome missegregation and erroneous ascospore formation. Kar1-­mediated SPB duplication bypasses the requirement of dephosphorylation of Sfi1, another half-bridge component previously identified as a licensing factor. Our results therefore reveal an unexpected role of Kar1 in licensing meiotic SPB duplication and suggest a unique mechanism of SPB regulation during budding yeast meiosis.


2015 ◽  
Vol 210 (1) ◽  
pp. 99-113 ◽  
Author(s):  
Damien Laporte ◽  
Fabien Courtout ◽  
Benoît Pinson ◽  
Jim Dompierre ◽  
Bénédicte Salin ◽  
...  

Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament–containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.


2017 ◽  
Author(s):  
Masashi Yukawa ◽  
Yusuke Yamada ◽  
Tomoaki Yamauchi ◽  
Takashi Toda

ABSTRACTKinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by Kinesin-5 that generates outward force. This outward force is balanced by antagonistic inward force elicited by Kinesin-14 and/or Dynein. In fission yeast, two Kinesin-14s, Pkl1 and Klp2, play an opposing role against Kinesin-5/Cut7. However, how these two Kinesin-14s coordinate individual activities remains elusive. Here we show that while deletion of eitherpkl1orklp2rescues temperature sensitivecut7mutants, onlypkl1deletion can bypass the lethality caused bycut7deletion. Pkl1 is tethered to the spindle pole body, while Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two Kinesin-14s. Interestingly, human Kinesin-14/HSET can replace either Pkl1 or Klp2. Moreover, overproducing HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism of how two different Kinesin-14s exert their antagonistic roles against Kinesin-5 in a spatially distinct manner.SUMMARY STATEMENTProper force-balance generated by Kinesin-5 and Kinesin-14 is crucial for spindle bipolarity. Two fission yeast Kinesin-14s localize to different structures, thereby collaboratively producing inward forces against Kinesin-5-mediated outward force.Abbreviations usedGBPGFP-binding proteinMWP complexMsd1-Wdr8-Pkl1 complexSPBspindle pole bodytstemperature sensitiveγ-TuCthe γ-tubulin complex


1993 ◽  
Vol 121 (3) ◽  
pp. 503-512 ◽  
Author(s):  
P Y Goh ◽  
J V Kilmartin

A mutant, ndc10-1, was isolated by anti-tubulin staining of temperature-sensitive mutant banks of budding yeast. ndc10-1 has a defect chromosome segregation since chromosomes remains at one pole of the anaphase spindle. This produces one polyploid cell and one aploid cell, each containing a spindle pole body (SPD. NDC10 was cloned and sequenced and is identical to CBF2 (Jiang, W., J. Lechnermn and J. Carbon. 1993. J. Cell Biol. 121:513) which is the 110-kD component of a centromere DNA binding complex (Lechner, J., and J. Carbon. 1991. Cell. 61:717-725). NDC10 is an essential gene. Antibodies to Ndc10p labeled the SPB region in nearly all the cells examined including nonmitotic cells. In some cells with short spindles which may be in metaphase, staining was also observed along the spindle. The staining pattern and the phenotype of ndc10-1 are consistent with Cbf2p/Ndc10p being a kinetochore protein, and provide in vivo evidence for its role in the attachment of chromosomes to the spindle.


2019 ◽  
Vol 83 (9) ◽  
pp. 1717-1720 ◽  
Author(s):  
Ngang Heok Tang ◽  
Chii Shyang Fong ◽  
Hirohisa Masuda ◽  
Isabelle Jourdain ◽  
Masashi Yukawa ◽  
...  

2005 ◽  
Vol 16 (5) ◽  
pp. 2325-2338 ◽  
Author(s):  
Haruhiko Asakawa ◽  
Aki Hayashi ◽  
Tokuko Haraguchi ◽  
Yasushi Hiraoka

In the fission yeast Schizosaccharomyces pombe, centromeres remain clustered at the spindle-pole body (SPB) during mitotic interphase. In contrast, during meiotic prophase centromeres dissociate from the SPB. Here we examined the behavior of centromere proteins in living meiotic cells of S. pombe. We show that the Nuf2-Ndc80 complex proteins (Nuf2, Ndc80, Spc24, and Spc25) disappear from the centromere in meiotic prophase when the centromeres are separated from the SPB. The centromere protein Mis12 also dissociates during meiotic prophase; however, Mis6 remains throughout meiosis. When cells are induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis), centromeres remain associated with the SPB during meiotic prophase. However, inactivation of Nuf2 by a mutation causes the release of centromeres from the SPB in pat1 mutant cells, suggesting that the Nuf2-Ndc80 complex connects centromeres to the SPB. We further found that removal of the Nuf2-Ndc80 complex from the centromere and centromere-SPB dissociation are caused by mating pheromone signaling. Because pat1 mutant cells also show aberrant chromosome segregation in the first meiotic division and this aberration is compensated by mating pheromone signaling, dissociation of the Nuf2-Ndc80 complex may be associated with remodeling of the kinetochore for meiotic chromosome segregation.


2013 ◽  
Vol 24 (18) ◽  
pp. 2894-2906 ◽  
Author(s):  
Hirohisa Masuda ◽  
Risa Mori ◽  
Masashi Yukawa ◽  
Takashi Toda

γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.


2019 ◽  
Author(s):  
Ngang Heok Tang ◽  
Chii Shyang Fong ◽  
Hirohisa Masuda ◽  
Isabelle Jourdain ◽  
Masashi Yukawa ◽  
...  

AbstractTemperature-sensitive (ts) mutants provide powerful tools, thereby investigating cellular functions of essential genes. We report here a simple procedure to generate ts mutations using error-prone PCR in pcp1 that encodes a spindle pole body (SPB) component in Schizosaccharomyces pombe. This manipulation is not restricted to analysis of Pcp1, and can be suited to any essential genes involved in other processes.


Sign in / Sign up

Export Citation Format

Share Document