scholarly journals Defective phototransductive disk membrane morphogenesis in transgenic mice expressing opsin with a mutated N-terminal domain

1997 ◽  
Vol 110 (20) ◽  
pp. 2589-2597 ◽  
Author(s):  
X. Liu ◽  
T.H. Wu ◽  
S. Stowe ◽  
A. Matsushita ◽  
K. Arikawa ◽  
...  

Retinitis pigmentosa is a heterogeneous group of inherited retinal disorders in which the photoreceptor cells degenerate. A line of transgenic mice expresses a mutant opsin gene that encodes three missense mutations near the amino terminus, including P23H, which is the basis for a common form of dominant retinitis pigmentosa. By studying the photoreceptor cells of these mice and their normal littermates, we found that: (1) opsin was routed correctly, (2) the concentration of opsin in the disk membranes appeared normal by freeze fracture analysis, (3) the amount of disk membrane shedding was normal, but (4) the basal disks of the outer segments were disorganized, indicating defective disk membrane morphogenesis. Defective disk membrane morphogenesis appears to result in the formation of fewer mature disks, thus accounting for observed gradual shortening of the photoreceptor outer segments with age. We suggest that abnormal disk membrane morphogenesis is the primary cellular defect that leads to blindness, and that it arises from the inability of nascent disk membranes, containing normal and mutant opsin, to interact normally with each other.

1992 ◽  
Vol 116 (3) ◽  
pp. 659-667 ◽  
Author(s):  
K Arikawa ◽  
L L Molday ◽  
R S Molday ◽  
D S Williams

The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.


Author(s):  
A. Tonosaki ◽  
M. Yamasaki ◽  
H. Washioka ◽  
J. Mizoguchi

A vertebrate disk membrane is composed of 40 % lipids and 60 % proteins. Its fracture faces have been classed into the plasmic (PF) and exoplasmic faces (EF), complementary with each other, like those of most other types of cell membranes. The hypothesis assuming the PF particles as representing membrane-associated proteins has been challenged by serious questions if they in fact emerge from the crystalline formation or decoration effects during freezing and shadowing processes. This problem seems to be yet unanswered, despite the remarkable case of the purple membrane of Halobacterium, partly because most observations have been made on the replicas from a single face of specimen, and partly because, in the case of photoreceptor membranes, the conformation of a rhodopsin and its relatives remains yet uncertain. The former defect seems to be partially fulfilled with complementary replica methods.


Author(s):  
Thomas S. Leeson ◽  
C. Roland Leeson

Numerous previous studies of outer segments of retinal receptors have demonstrated a complex internal structure of a series of transversely orientated membranous lamellae, discs, or saccules. In cones, these lamellae probably are invaginations of the covering plasma membrane. In rods, however, they appear to be isolated and separate discs although some authors report interconnections and some continuities with the surface near the base of the outer segment, i.e. toward the inner segment. In some species, variations have been reported, such as longitudinally orientated lamellae and lamellar whorls. In cross section, the discs or saccules show one or more incisures. The saccules probably contain photolabile pigment, with resulting potentials after dipole formation during bleaching of pigment. Continuity between the lamina of rod saccules and extracellular space may be necessary for the detection of dipoles, although such continuity usually is not found by electron microscopy. Particles on the membranes have been found by low angle X-ray diffraction, by low temperature electron microscopy and by freeze-etching techniques.


Author(s):  
Anju D. ◽  
Pushpa Raj Poudel ◽  
Ajoy Viswam ◽  
Ashwini M. J.

Retinitis pigmentosa (RP) is an inherited, degenerative eye disease that causes severe vision impairment due to the progressive degeneration of rod photoreceptor cells in retina. This form of retinal dystrophy manifests initial symptoms independentof age; thus, RP diagnosis occurs anywhere from early infancy to late adulthood. This primary pigmentary retinal dystrophy is a hereditary disorder predominantly affecting the rods more than the cones. The main classical triads of retinitis pigmentosa are arteriolar attenuation, Retinal bone spicule pigmentation and Waxy disc pallor. The main treatment of retinitis pigmentosa is by using Low vision aids (LVA) and Genetic counseling. As such a complete cure for retinitis pigmentosa is not present. So a treatment protocol has to be adopted that helps in at least the symptomatic relief. In Ayurveda, the signs and symptoms of this can be compared with the Lakshanas of Doshandha which is one among the Dristigata Roga. It is considered as a diseased condition in which sunset will obliterate the Dristi Mandala and makes the person blind at night time. During morning hours the rising sunrays will disperse the accumulated Dosas from Dristi to clear vision. This disease resembles Kaphajatimira in its pathogenesis, but the night blindness is the special feature. Since the disease is purely Kaphaja, a treatment attempt is planned in Kaphara and Brimhana line. The present paper discusses a case of retinitis pigmentosa and it’s Ayurvedic Treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Kutsyr ◽  
Lucía Maestre-Carballa ◽  
Mónica Lluesma-Gomez ◽  
Manuel Martinez-Garcia ◽  
Nicolás Cuenca ◽  
...  

AbstractThe gut microbiome is known to influence the pathogenesis and progression of neurodegenerative diseases. However, there has been relatively little focus upon the implications of the gut microbiome in retinal diseases such as retinitis pigmentosa (RP). Here, we investigated changes in gut microbiome composition linked to RP, by assessing both retinal degeneration and gut microbiome in the rd10 mouse model of RP as compared to control C57BL/6J mice. In rd10 mice, retinal responsiveness to flashlight stimuli and visual acuity were deteriorated with respect to observed in age-matched control mice. This functional decline in dystrophic animals was accompanied by photoreceptor loss, morphologic anomalies in photoreceptor cells and retinal reactive gliosis. Furthermore, 16S rRNA gene amplicon sequencing data showed a microbial gut dysbiosis with differences in alpha and beta diversity at the genera, species and amplicon sequence variants (ASV) levels between dystrophic and control mice. Remarkably, four fairly common ASV in healthy gut microbiome belonging to Rikenella spp., Muribaculaceace spp., Prevotellaceae UCG-001 spp., and Bacilli spp. were absent in the gut microbiome of retinal disease mice, while Bacteroides caecimuris was significantly enriched in mice with RP. The results indicate that retinal degenerative changes in RP are linked to relevant gut microbiome changes. The findings suggest that microbiome shifting could be considered as potential biomarker and therapeutic target for retinal degenerative diseases.


1978 ◽  
Vol 26 (10) ◽  
pp. 822-828 ◽  
Author(s):  
I Nir

Localization of carbohydrate components in retinal photoreceptor cells and membranes was studied. Frog and rat retinas were fixed with glutaraldehyde and embedded in glycol methacrylate or in a mixture of glycol methacrylate, glutaraldehyde and urea. Thin sections were incubated with ferritin-labeled concanavalin A (F-Con A) and stained with osmium vapors. Intensive binding was observed in both rod and cone outer segments. In the rod inner segment, differential binding of F-Con A was demonstrated. While numerous ferritin granules were observed in the myoid zone, only a few were seen in the ellipsoid zone, except for a local accumulation along the plasma membrane. In the rod outer segment, Con A binding sites were closely associated with the disk membranes. Ferritin granules were observed on both sides of the membranes. The relationship between the localization of Con A binding sites and the orientation of visual pigment molecules within the rod outer segments disk membranes was discussed.


1962 ◽  
Vol 14 (1) ◽  
pp. 73-109 ◽  
Author(s):  
John E. Dowling ◽  
Richard L. Sidman

Retinal dystrophies, known in man, dog, mouse, and rat, involve progressive loss of photoreceptor cells with onset during or soon after the developmental period. Functional (electroretinogram), chemical (rhodopsin analyses) and morphological (light and electron microscopy) data obtained in the rat indicated two main processes: (a) overproduction of rhodopsin and an associated abnormal lamellar tissue component, (b) progressive loss of photoreceptor cells. The first abnormality recognized was the appearance of swirling sheets or bundles of extracellular lamellae between normally developing retinal rods and pigment epithelium; membrane thickness and spacing resembled that in normal outer segments. Rhodopsin content reached twice normal values, was present in both rods and extracellular lamellae, and was qualitatively normal, judged by absorption maximum and products of bleaching. Photoreceptors attained virtually adult form and ERG function. Then rod inner segments and nuclei began degenerating; the ERG lost sensitivity and showed selective depression of the a-wave at high luminances. Outer segments and lamellae gradually degenerated and rhodopsin content decreased. No phagocytosis was seen, though pigment cells partially dedifferentiated and many migrated through the outer segment-debris zone toward the retina. Eventually photoreceptor cells and the b-wave of the ERG entirely disappeared. Rats kept in darkness retained electrical activity, rhodopsin content, rod structure, and extracellular lamellae longer than litter mates in light.


Sign in / Sign up

Export Citation Format

Share Document