2′,3′-Cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types

1997 ◽  
Vol 110 (23) ◽  
pp. 2979-2985
Author(s):  
B. McFerran ◽  
R. Burgoyne

In this study, we have examined the expression and intracellular localisation of the myelin protein 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) in bovine adrenal medullary chromaffin cell cultures. By immunoblotting, using two distinct anti-CNP monoclonal antibodies, CNP was detected in medullary cell cultures and expression of CNP was confirmed by reverse transcription and PCR amplification. CNP did not leak from digitonin-permeabilised chromaffin cells, suggesting that there is no cytosolic pool of this protein. Immunofluorescence studies with both antibodies showed that all cells in the medullary chromaffin cell culture were stained with a punctate appearance consistent with an intracellular localisation for CNP. More specifically it was demonstrated that CNP is co-localised with mitochondria. Various cell types in chromaffin cell cultures were stained with a mitochondrial pattern and CNP staining was co-localised with mitochondrial staining. These results show that CNP is a widely expressed protein that is associated with mitochondria and provides new clues as to its cellular function outside of myelin structures.

1997 ◽  
Vol 272 (2) ◽  
pp. C476-C484 ◽  
Author(s):  
R. B. Lomax ◽  
P. Michelena ◽  
L. Nunez ◽  
J. Garcia-Sancho ◽  
A. G. Garcia ◽  
...  

In this study, we investigated the contribution of different subtypes of voltage-dependent Ca2+ channels to changes in cytosolic free Ca2+ ([Ca2+]i) and secretion in noradrenergic and adrenergic bovine chromaffin cells. In single immunocytochemically identified chromaffin cells, [Ca2+]i increased transiently during high K+ depolarization. Furnidipine and BAY K 8644, L-type Ca2+ channel blocker and activator, respectively, affected the [Ca2+]i rise more in noradrenergic than in adrenergic cells. In contrast, the Q-type Ca2+ channel blocker omega-conotoxin MVIIC inhibited the [Ca2+]i rise more in adrenergic cells. omega-Agatoxin IVA (30 nM), which blocks P-type Ca2+ channels, had little effect on the [Ca2+]i signal. The N-type Ca2+ channel blocker omega-conotoxin GVIA similarly inhibited the [Ca2+]i rise in both cell types. The effects of furnidipine, BAY K 8644, and omega-conotoxin MVIIC on K+-evoked norepinephrine and epinephrine release paralleled those effects on [Ca2+]i signals. However, omega-conotoxin GVIA and 30 nM omega-agatoxin IVA did not affect the secretion of either amine. The data suggest that, in the bovine adrenal medulla, the release of epinephrine and norepinephrine are preferentially controlled by Q- and L-type Ca2+ channels, respectively. P- and N-type Ca2+ channels do not seem to control the secretion of either catecholamine.


1991 ◽  
Vol 113 (5) ◽  
pp. 1057-1067 ◽  
Author(s):  
M L Vitale ◽  
A Rodríguez Del Castillo ◽  
L Tchakarov ◽  
J M Trifaró

Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.


1987 ◽  
Vol 88 (4) ◽  
pp. 521-526
Author(s):  
R.M. Brown ◽  
C.A. Middleton

The behaviour in culture of dissociated epithelial cells from chick embryo pigmented retina epithelium (PRE), corneal epithelium (CE) and epidermis has been studied using time-lapse cinematography. The analysis concentrated on the contact behaviour of 60 previously isolated cells of each type during a 24 h period starting 3.5 h after the cells were plated out. During the period analysed the number of isolated cells in cultures of all three types gradually decreased as they became incorporated into islands and sheets of cells. However, there were significant differences in behaviour between the cell types during the establishment of these sheets and islands. In PRE cell cultures, islands of cells developed because, throughout the period of analysis, collisions involving previously isolated cells almost invariably resulted in the development of a stable contact. Once having established contact with another cell these cells rarely broke away again to become reisolated. In contrast the contacts formed between colliding CE and epidermal cells were, at least initially, much less stable and cells of both these types were frequently seen to break away and become reisolated after colliding with other cells. Sheets and islands of cells eventually developed in these cultures because the frequency with which isolated cells become reisolated decreased with increasing time in culture. The possible reasons underlying the different behaviour of PRE cells, when compared with that of CE and epidermal cells, are discussed. It is suggested that the decreasing tendency of isolated CE and epidermal cells to become reisolated may be related to the formation of desmosomes.


1917 ◽  
Vol 25 (6) ◽  
pp. 807-817 ◽  
Author(s):  
Tomosaburo Ogata ◽  
Akira Ogata

We have established the fact that the chrome reaction as well as the silver and osmium reactions are merely reductions by adrenalin. In our opinion the naming of the cells giving a positive reaction should not be based upon the reaction i.e., chromaffin cells), but on the presence of adrenalin itself. Biedl's terms, adrenal cell, adrenal organ, adrenal body, adrenal system, and also Bonnamour's term, adrenalin-producing cells, are appropriate in this respect. We propose the names adrenalin cell, adrenalin tissue, adrenalin system, thereby indicating the presence of adrenalin.


2018 ◽  
Vol 52 (2) ◽  
pp. 155-164
Author(s):  
M. Banerjee ◽  
S. Ghosh ◽  
P. Chakrabarti

Abstract The histological changes observed in the pituitary corticotrophs, gonadotrophs, adrenocortical tissues and testicular cells in M. vittatus (Bloch, 1794) have been studies during growth, maturation and spawning phases. The studies based on the changes observed in the cell types, shape and size of the cells of the adrenocortical tissues, testes and the overall percentage of gonadotroph (GTH) and thyrotroph (TSH) cells of the pituitary. However, during growth phase, in proximal pars distalis (PPD) the considerable increment of GTH and TSH have been observed having intense aniline blue stain. The corticotrophs (ACTH) also showed significant accumulation of fuchsinophilic cytoplasmic granules. The cytoplasmic features and the architecture of the interrenal cells were well coincident with the increase of different spermatogenic cells. During the maturation phase dense granulation in the GTH and TSH cells appeared to be concomitant with the spermiation. The amount of cytoplasmic granules of the interrenal cells increased than chromaffin cells and was well coincidence with the increase of spermatids and spermatozoa. The hyperactive and vacuolated features of the interrenal cells during spawning phase appeared to be concomitant with the final process of spermiation.


1992 ◽  
Vol 1 (1) ◽  
pp. 33-41 ◽  
Author(s):  
John D. Ortega ◽  
Jacqueline Sagen ◽  
George D. Pappas

Xenogeneic donors, a largely untapped resource, would solve many of the problems associated with the limited availability of human donor tissue for neural transplantation. Previous work in our laboratory has revealed that xenografts of isolated bovine chromaffin cells survive transplantation into the periaqueductal gray (PAG) of immunosuppressed adult rats. Electron microscopic analysis reveals that graft sites contain healthy chromaffin cells, but do not contain host immune cells typical of graft rejection. The aim of the current study was to assess the necessary conditions for long-term survival of bovine chromaffin cell xenografts in the central nervous system (CNS). In particular, the need for short-course vs. permanent immunosuppressive therapy with cyclosporine A (CsA) for the long-term survival of grafted bovine chromaffin cells was addressed. Grafts from animals receiving continuous CsA treatment for either 3, 6, or 12 wk contained large clumps of dopamines-β-hydroxylase (DBH) positive cells in contrast to the few surviving cells observed in nonimmunosuppressed animals. In addition, grafts from animals that had CsA treatment terminated at 3 or 6 wk contained similarly large clumps of DBH-positive cells. Furthermore, short-term immunosuppression (3 wk) appeared to enhance the long-term survival of grafted cells, since clumps of DBH staining cells could still be positively identified in the host PAG at least 1 yr after transplantation. Complete rejection of graft tissue depends on several factors, such as blood–brain barrier integrity, the presence of major histocompatability complex (MHC) antigens in either the host or graft, and the status of the host immune system. By using a suspension of isolated bovine chromaffin cells, potential MHC antigen presenting cells, such as endothelial cells, are eliminated. In addition, CsA treatment may negate the immunologic consequences of increased blood–brain barrier permeability following surgical trauma by attenuating the host cell mediated response. In summary, long-term survival of isolated chromaffin cell xenografts in the rat CNS may be attained by a short-term course of CsA.


1989 ◽  
Vol 260 (3) ◽  
pp. 915-922 ◽  
Author(s):  
J P Simon ◽  
M F Bader ◽  
D Aunis

Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.


Sign in / Sign up

Export Citation Format

Share Document