Localization and processing from a polycistronic precursor of novel snoRNAs in maize

1998 ◽  
Vol 111 (15) ◽  
pp. 2121-2128 ◽  
Author(s):  
P.J. Shaw ◽  
A.F. Beven ◽  
D.J. Leader ◽  
J.W. Brown

We have shown previously that groups of U14 snoRNA genes are clustered with other, novel snoRNAs in maize. These genes are transcribed polycistronically from an upstream promoter to give a precursor snoRNA, which is processed by a splicing-independent mechanism. The clusters contain both box C/D snoRNAs, thought to guide rRNA O-ribose methylations, and the first plant box H/ACA snoRNA so far identified, thought to guide an rRNA pseudo-uridylation. Here we show that four novel snoRNAs identified as members of U14-containing gene clusters each show distinct sub-nucleolar localizations. Two of the snoRNAs (snoR2, a box H/ACA snoRNA, and snoR3, a box C/D snoRNA) colocalise closely with nucleolar rDNA transcription sites. A third box C/D snoRNA, U49, is localised to a more extended region which includes the transcription sites. On the other hand snoR1, another box C/D snoRNA, is located in a quite different region of the nucleolus, and shows a similar distribution to that of 7–2/MRP, a snoRNA involved in the later pre-rRNA cleavage reactions. This may indicate that this snoRNA is involved at later stages of processing, whereas the other snoRNAs are involved early or cotranscriptionally. Probes to intergenic spacer regions of the precursor snoRNA have been used to determine the location of the precursor. This shows a clear labelling of both the dense fibrillar component of the nucleolus, and of coiled bodies. This distribution implies that the polycistronic precursor is imported into the nucleolus for processing to the mature snoRNAs, and that the import or processing pathway involves coiled bodies.

1994 ◽  
Vol 81 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Marie-Pierre Brechard ◽  
Michéle Hartung ◽  
Anne Lanversin ◽  
Pierre Cau ◽  
André Stahl

2019 ◽  
Vol 74 (11-12) ◽  
pp. 319-328
Author(s):  
Oleg Georgiev ◽  
Kiril Mishev ◽  
Maria Krasnikova ◽  
Meglena Kitanova ◽  
Anna Dimitrova ◽  
...  

Abstract Hordeum vulgare and Hordeum bulbosum are two closely related barley species, which share a common H genome. H. vulgare has two nucleolar organizer regions (NORs), while the NOR of H. bulbosum is only one. We sequenced the 2.5 kb 25S-18S region in the rDNA of H. bulbosum and compared it to the same region in H. vulgare as well as to the other Triticeae. The region includes an intergenic spacer (IGS) with a number of subrepeats, a promoter, and an external transcribed spacer (5′ETS). The IGS of H. bulbosum downstream of 25S rRNA contains two 143-bp repeats and six 128-bp repeats. In contrast, the IGS in H. vulgare contains an array of seven 79-bp repeats and a varying number of 135-bp repeats. The 135-bp repeats in H. vulgare and the 128-bp repeats in H. bulbosum show similarity. Compared to H. vulgare, the 5′ETS of H. bulbosum is shorter. Additionally, the 5′ETS regions in H. bulbosum and H. vulgare diverged faster than in other Triticeae genera. Alignment of the Triticeae promoter sequences suggests that in Hordeum, as in diploid Triticum, transcription starts with guanine and not with adenine as it is in many other plants.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yonghui Zeng ◽  
Xihan Chen ◽  
Anne Mette Madsen ◽  
Athanasios Zervas ◽  
Tue Kjærgaard Nielsen ◽  
...  

ABSTRACT Conserving additional energy from sunlight through bacteriochlorophyll (BChl)-based reaction center or proton-pumping rhodopsin is a highly successful life strategy in environmental bacteria. BChl and rhodopsin-based systems display contrasting characteristics in the size of coding operon, cost of biosynthesis, ease of expression control, and efficiency of energy production. This raises an intriguing question of whether a single bacterium has evolved the ability to perform these two types of phototrophy complementarily according to energy needs and environmental conditions. Here, we report four Tardiphaga sp. strains (Alphaproteobacteria) of monophyletic origin isolated from a high Arctic glacier in northeast Greenland (81.566° N, 16.363° W) that are at different evolutionary stages concerning phototrophy. Their >99.8% identical genomes contain footprints of horizontal operon transfer (HOT) of the complete gene clusters encoding BChl- and xanthorhodopsin (XR)-based dual phototrophy. Two strains possess only a complete XR operon, while the other two strains have both a photosynthesis gene cluster and an XR operon in their genomes. All XR operons are heavily surrounded by mobile genetic elements and are located close to a tRNA gene, strongly signaling that a HOT event of the XR operon has occurred recently. Mining public genome databases and our high Arctic glacial and soil metagenomes revealed that phylogenetically diverse bacteria have the metabolic potential of performing BChl- and rhodopsin-based dual phototrophy. Our data provide new insights on how bacteria cope with the harsh and energy-deficient environment in surface glacier, possibly by maximizing the capability of exploiting solar energy. IMPORTANCE Over the course of evolution for billions of years, bacteria that are capable of light-driven energy production have occupied every corner of surface Earth where sunlight can reach. Only two general biological systems have evolved in bacteria to be capable of net energy conservation via light harvesting: one is based on the pigment of (bacterio-)chlorophyll and the other is based on proton-pumping rhodopsin. There is emerging genomic evidence that these two rather different systems can coexist in a single bacterium to take advantage of their contrasting characteristics in the number of genes involved, biosynthesis cost, ease of expression control, and efficiency of energy production and thus enhance the capability of exploiting solar energy. Our data provide the first clear-cut evidence that such dual phototrophy potentially exists in glacial bacteria. Further public genome mining suggests this understudied dual phototrophic mechanism is possibly more common than our data alone suggested.


2000 ◽  
Vol 11 (6) ◽  
pp. 2175-2189 ◽  
Author(s):  
Stéphanie Trumtel ◽  
Isabelle Léger-Silvestre ◽  
Pierre-Emmanuel Gleizes ◽  
Frédéric Teulières ◽  
Nicole Gas

Using Saccharomyces cerevisiae strains with genetically modified nucleoli, we show here that changing parameters as critical as the tandem organization of the ribosomal genes and the polymerase transcribing rDNA, although profoundly modifying the position and the shape of the nucleolus, only partially alter its functional subcompartmentation. High-resolution morphology achieved by cryofixation, together with ultrastructural localization of nucleolar proteins and rRNA, reveals that the nucleolar structure, arising upon transcription of rDNA from plasmids by RNA polymerase I, is still divided in functional subcompartments like the wild-type nucleolus. rRNA maturation is restricted to a fibrillar component, reminiscent of the dense fibrillar component in wild-type cells; a granular component is also present, whereas no fibrillar center can be distinguished, which directly links this latter substructure to rDNA chromosomal organization. Although morphologically different, the mininucleoli observed in cells transcribing rDNA with RNA polymerase II also contain a fibrillar subregion of analogous function, in addition to a dense core of unknown nature. Upon repression of rDNA transcription in this strain or in an RNA polymerase I thermosensitive mutant, the nucleolar structure falls apart (in a reversible manner), and nucleolar constituents partially relocate to the nucleoplasm, indicating that rRNA is a primary determinant for the assembly of the nucleolus.


1986 ◽  
Vol 6 (7) ◽  
pp. 2593-2601 ◽  
Author(s):  
T Kadesch ◽  
P Berg

We have examined the ability of the simian virus 40 72-base pair enhancer segment to simultaneously activate multiple transcription units with plasmids that contain one, two, or three simian virus 40-based transcription units in various arrangements. After transfection into CV1 cells, the expression of a marker gene, Ecogpt, was determined as a function of the position of that marker gene relative to the other transcription units and the position of the marker gene relative to enhancer elements on the plasmids. Two types of position effects were revealed by that analysis. The first, promoter occlusion, causes reduced transcription at a downstream promoter if transcription is initiated at a nearby upstream promoter. This effect does not involve enhancer elements directly, even though the effect is most pronounced when the downstream promoter lacks an enhancer element. The second effect stems from the ability of promoter sequences to reduce the effect of a single enhancer element on other promoters in the same plasmid. This latter effect is mediated by either promoters adjacent to the enhancer element or promoters interposed between the enhancer element and the other promoters on the plasmid.


2006 ◽  
Vol 188 (4) ◽  
pp. 1236-1244 ◽  
Author(s):  
Takashi Kawasaki ◽  
Yutaka Hayashi ◽  
Tomohisa Kuzuyama ◽  
Kazuo Furihata ◽  
Nobuya Itoh ◽  
...  

ABSTRACT Furaquinocin (FQ) A, produced by Streptomyces sp. strain KO-3988, is a natural polyketide-isoprenoid hybrid compound that exhibits a potent antitumor activity. As a first step toward understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we have cloned an FQ A biosynthetic gene cluster by taking advantage of the fact that an isoprenoid biosynthetic gene cluster generally exists in flanking regions of the mevalonate (MV) pathway gene cluster in actinomycetes. Interestingly, Streptomyces sp. strain KO-3988 was the first example of a microorganism equipped with two distinct mevalonate pathway gene clusters. We were able to localize a 25-kb DNA region that harbored FQ A biosynthetic genes (fur genes) in both the upstream and downstream regions of one of the MV pathway gene clusters (MV2) by using heterologous expression in Streptomyces lividans TK23. This was the first example of a gene cluster responsible for the biosynthesis of a polyketide-isoprenoid hybrid compound. We have also confirmed that four genes responsible for viguiepinol [3-hydroxypimara-9(11),15-diene] biosynthesis exist in the upstream region of the other MV pathway gene cluster (MV1), which had previously been cloned from strain KO-3988. This was the first example of prokaryotic enzymes with these biosynthetic functions. By phylogenetic analysis, these two MV pathway clusters were identified as probably being independently distributed in strain KO-3988 (orthologs), rather than one cluster being generated by the duplication of the other cluster (paralogs).


2014 ◽  
Vol 81 (3) ◽  
pp. 976-985 ◽  
Author(s):  
Zihao Pan ◽  
Jiale Ma ◽  
Wenyang Dong ◽  
Wenchao Song ◽  
Kaicheng Wang ◽  
...  

ABSTRACTStreptococcus suisis an emerging zoonotic pathogen causing severe infections in pigs and humans. In previous studies, 33 serotypes ofS. suishave been identified using serum agglutination. Here, we describe a novelS. suisstrain, CZ130302, isolated from an outbreak of acute piglet meningitis in eastern China. Strong pathogenicity of meningitis caused by strain CZ130302 was reproduced in the BALB/c mouse model. The strain showed a high fatality rate (8/10), higher than those for known virulent serotype 2 strains P1/7 (1/10) and 9801 (2/10). Cell adhesion assay results with bEnd.3 and HEp2 cells showed that CZ130302 was significantly close to P1/7 and 9801. Both the agglutination test and its complementary test showed that strain CZ130302 had no strong cross-reaction with the other 33S. suisserotypes. The multiplex PCR assays revealed no specified bands for all four sets used to detect the other 33 serotypes. In addition, genetic analysis of the wholecpsgene clusters of all serotypes was performed in this study. The results of comparative genomics showed that thecpsgene cluster of CZ130302, which was not previously reported, showed no homology to the gene sequences of the other strains. Especially, thewzy,wzx, and acetyltransferase genes of strain CZ130302 are phylogenetically distinct from strains of the other 33 serotypes. Therefore, this study suggested that strain CZ130302 represents a novel variant serotype ofS. suis(designated serotype Chz) which has a high potential to be virulent and associated with meningitis in animals.


1996 ◽  
Vol 109 (6) ◽  
pp. 1241-1251 ◽  
Author(s):  
A.F. Beven ◽  
R. Lee ◽  
M. Razaz ◽  
D.J. Leader ◽  
J.W. Brown ◽  
...  

We have analyzed the organization of pre-rRNA processing by confocal microscopy in pea root cell nucleoli using a variety of probes for fluorescence in situ hybridization and immunofluorescence. Our results show that transcript processing within the nucleolus is spatially highly organized. Probes to the 5′ external transcribed spacer (ETS) and first internal transcribed spacer (ITS1) showed that the excision of the ETS occurred in a sub-region of the dense fibrillar component (DFC), whereas the excision of ITS1 occurred in the surrounding region, broadly corresponding to the granular component. In situ labelling with probes to the snoRNAs U3 and U14, and immunofluorescence labelling with antibodies to fibrillarin and SSB1 showed a high degree of coincidence with the ETS pattern, confirming that ETS cleavage and 18 S rRNA production occur in the DFC. ETS, U14, fibrillarin and SSB1 showed a fine substructure within the DFC comprising closely packed small foci, whereas U3 appeared more diffuse throughout the DFC. A third snoRNA, 7–2/MRP, was localised to the region surrounding the ETS, in agreement with its suggested role in ITS1 cleavage. All three snoRNAs were also frequently observed in numerous small foci in the nucleolar vacuoles, but none was detectable in coiled bodies. Antibodies to fibrillarin and SSB1 labelled coiled bodies strongly, though neither protein was detected in the nucleolar vacuoles. During mitosis, all the components analyzed, including pre-rRNA, were dispersed through the cell at metaphase, then became concentrated around the periphery of all the chromosomes at anaphase, before being localized to the developing nucleoli at late telophase. Pre-rRNA (ETS and ITS1 probes), U3 and U14 were also concentrated into small bodies, presumed to be pre-nucleolar bodies at anaphase.


2002 ◽  
Vol 184 (10) ◽  
pp. 2620-2625 ◽  
Author(s):  
Lei Wang ◽  
Sandy Huskic ◽  
Adam Cisterne ◽  
Deborah Rothemund ◽  
Peter R. Reeves

ABSTRACT Escherichia coli O55 is an important antigen which is often associated with enteropathogenic E. coli clones. We sequenced the genes responsible for its synthesis and identified genes for O-antigen polymerase, O-antigen flippase, four enzymes involved in GDP-colitose synthesis, and three glycosyltransferases, all by comparison with known genes. Upstream of the normal O-antigen region there is a gne gene, which encodes a UDP-GlcNAc epimerase for converting UDP-GlcNAc to UDP-GalNAc and is essential for O55 antigen synthesis. The O55 gne product has only 20 and 26% identity to the gne genes of Pseudomonas aeruginosa and E. coli O113, respectively. We also found evidence for the O55 gene cluster's having evolved from another gene cluster by gain and loss of genes. Only three of the GDP-colitose pathway genes are in the usual location, the other two being separated, although nearby. It is thought that the E. coli O157:H7 clone evolved from the O55:H7 clone in part by transfer of the O157 gene cluster into an O55 lineage. Comparison of genes flanking the O-antigen gene clusters of the O55:H7 and O157:H7 clones revealed one recombination site within the galF gene and located the other between the hisG and amn genes. Genes outside the recombination sites are 99.6 to 100% identical in the two clones, while most genes thought to have transferred with the O157 gene cluster are 95 to 98% identical.


2001 ◽  
Vol 67 (5) ◽  
pp. 2360-2364 ◽  
Author(s):  
Verônica V. Vieira ◽  
Luiz Fernando M. Teixeira ◽  
Ana Carolina P. Vicente ◽  
Hooman Momen ◽  
Carlos André Salles

ABSTRACT In this study, we demonstrated that analyzed strains ofVibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.


Sign in / Sign up

Export Citation Format

Share Document