Role of myosin II tail sequences in its function and localization at the cleavage furrow in Dictyostelium

1999 ◽  
Vol 112 (13) ◽  
pp. 2195-2201 ◽  
Author(s):  
S. Shu ◽  
R.J. Lee ◽  
J.M. LeBlanc-Straceski ◽  
T.Q. Uyeda

Cytoplasmic myosin II accumulates in the cleavage furrow and provides the force for cytokinesis in animal and amoeboid cells. One model proposes that a specific domain in the myosin II tail is responsible for its localization, possibly by interacting with a factor concentrated in the equatorial region. To test this possibility, we have expressed myosins carrying mutations in the tail domain in a strain of Dictyostelium cells from which the endogenous myosin heavy chain gene has been deleted. The mutations used in this study include four internal tail deletions: Mydelta824-941, Mydelta943-1464, Mydelta943-1194 and Mydelta1156-1464. Contrary to the prediction of the hypothesis, immunofluorescence staining demonstrated that all mutant myosins were able to move toward the furrow region. Chimeric myosins, which consisted of a Dictyostelium myosin head and chicken skeletal myosin tail, also efficiently localized to the cleavage furrow. All these deletion and chimeric mutant myosins, except for Mydelta943-1464, the largest deletion mutant, were able to support cytokinesis in suspension. Our data suggest that there is no single specific domain in the tail of Dictyostelium myosin II that is required for its functioning at and localization to the cleavage furrow.

2000 ◽  
Vol 149 (6) ◽  
pp. 1215-1224 ◽  
Author(s):  
Kazuo Emoto ◽  
Masato Umeda

Phosphatidylethanolamine (PE) is a major membrane phospholipid that is mainly localized in the inner leaflet of the plasma membrane. We previously demonstrated that PE was exposed on the cell surface of the cleavage furrow during cytokinesis. Immobilization of cell surface PE by a PE-binding peptide inhibited disassembly of the contractile ring components, including myosin II and radixin, resulting in formation of a long cytoplasmic bridge between the daughter cells. This blockade of contractile ring disassembly was reversed by removal of the surface-bound peptide, suggesting that the PE exposure plays a crucial role in cytokinesis. To further examine the role of PE in cytokinesis, we established a mutant cell line with a specific decrease in the cellular PE level. On the culture condition in which the cell surface PE level was significantly reduced, the mutant ceased cell growth in cytokinesis, and the contractile ring remained in the cleavage furrow. Addition of PE or ethanolamine, a precursor of PE synthesis, restored the cell surface PE on the cleavage furrow and normal cytokinesis. These findings provide the first evidence that PE is required for completion of cytokinesis in mammalian cells, and suggest that redistribution of PE on the cleavage furrow may contribute to regulation of contractile ring disassembly.


2010 ◽  
Vol 191 (7) ◽  
pp. 1333-1350 ◽  
Author(s):  
Xiaodong Fang ◽  
Jianying Luo ◽  
Ryuichi Nishihama ◽  
Carsten Wloka ◽  
Christopher Dravis ◽  
...  

Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a “headless” AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.


2008 ◽  
Vol 7 (5) ◽  
pp. 894-905 ◽  
Author(s):  
Hui Li ◽  
Qian Chen ◽  
Markus Kaller ◽  
Wolfgang Nellen ◽  
Ralph Gräf ◽  
...  

ABSTRACT Aurora kinases are highly conserved proteins with important roles in mitosis. Metazoans contain two kinases, Aurora A and B, which contribute distinct functions at the spindle poles and the equatorial region respectively. It is not currently known whether the specialized functions of the two kinases arose after their duplication in animal cells or were already present in their ancestral kinase. We show that Dictyostelium discoideum contains a single Aurora kinase, DdAurora, that displays characteristics of both Aurora A and B. Like Aurora A, DdAurora has an extended N-terminal domain with an A-box sequence and localizes at the spindle poles during early mitosis. Like Aurora B, DdAurora binds to its partner DdINCENP and localizes on centromeres at metaphase, the central spindle during anaphase, and the cleavage furrow at the end of cytokinesis. DdAurora also has several unusual properties. DdAurora remains associated with centromeres in anaphase, and this association does not require an interaction with DdINCENP. DdAurora then localizes at the cleavage furrow, but only at the end of cytokinesis. This localization is dependent on DdINCENP and the motor proteins Kif12 and myosin II. Thus, DdAurora may represent the ancestral kinase that gave rise to the different Aurora kinases in animals and also those in other organisms.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


Sign in / Sign up

Export Citation Format

Share Document