scholarly journals SHP-2 complex formation with the SHP-2 substrate-1 during C2C12 myogenesis

2001 ◽  
Vol 114 (11) ◽  
pp. 2187-2198
Author(s):  
Maria I. Kontaridis ◽  
Xiangdong Liu ◽  
Lei Zhang ◽  
Anton M. Bennett

Myogenesis is a highly ordered process that involves the expression of muscle-specific genes, cell-cell recognition and multinucleated myotube formation. Although protein tyrosine kinases have figured prominently in myogenesis, the involvement of tyrosine phosphatases in this process is unknown. SHP-2 is an SH2 domain-containing tyrosine phosphatase, which positively regulates growth and differentiation. We show that in C2C12 myoblasts, SHP-2 becomes upregulated early on during myogenesis and associates with a 120 kDa tyrosyl-phosphorylated complex. We have identified that the 120 kDa complex consists of the SHP-2 substrate-1 (SHPS-1) and the Grb2-associated binder-1 (Gab-1). SHPS-1, but not Gab-1, undergoes tyrosyl phosphorylation and association with SHP-2 during myogenesis, the kinetics of which correlate with the expression of MyoD. Either constitutive expression or inducible activation of MyoD in 10T½ fibroblasts promotes SHPS-1 tyrosyl phosphorylation and its association with SHP-2. It has been shown that p38 mitogen-activated protein kinase (MAPK) activity is required for the expression/activation of MyoD and MyoD-responsive genes. Inhibition of p38 MAPK by SB203580 in differentiating C2C12 myoblasts blocks MyoD expression, SHPS-1 tyrosyl phosphorylation and the association of SHPS-1 with SHP-2. These data suggest that SHPS-1/SHP-2 complex formation is an integral signaling component of skeletal muscle differentiation.

1995 ◽  
Vol 15 (12) ◽  
pp. 6829-6837 ◽  
Author(s):  
M Tanaka ◽  
R Gupta ◽  
B J Mayer

SH2/SH3 adapters are thought to function in signal transduction pathways by coupling inputs from tyrosine kinases to downstream effectors such as Ras. Members of the mitogen-activated protein kinase family are known to be activated by a variety of mitogenic stimuli, including tyrosine kinases such as Abl and the epidermal growth factor (EGF) receptor. We have used activation of the mitogen-activated protein kinase Erk-1 as a model system with which to examine whether various dominant-negative SH2/SH3 adapters (Grb2, Crk, and Nck) could block signaling pathways leading to Erk activation. Activation of Erk-1 by oncogenic Abl was effectively inhibited by Grb2 with mutations in either its SH2 or SH3 domain or by Crk-1 with an SH3 domain mutation. The Crk-1 SH2 mutant was less effective, while Nck SH2 and SH3 mutants had little or no effect on Erk activation. These results suggest that both Crk and Grb2 may contribute to the activation of Erk by oncogenic Abl, whereas Nck is unlikely to participate in this pathway. Next we examined whether combinations of these dominant-negative adapters could inhibit Erk activation more effectively than each mutant alone. When combinations of Crk-1 and Grb2 mutants were analyzed, the combination of the Crk-1 SH3 mutant plus the Grb2 SH3 mutant gave a striking synergistic effect. This finding suggests that in Abl-transformed cells, more than one class of tyrosine-phosphorylated sites (those that bind the Grb2 SH2 domain and those that bind the Crk SH2 domain) can lead to Ras activation. In contrast to results with Abl, Erk activation by EGF was strongly inhibited only by Grb2 mutants; Crk and Nck mutants had little or no effect. This finding suggests that Grb2 is the only adapter involved in the activation of Erk by EGF. Dominant-negative adaptors provide a novel means to identify binding interactions important in vivo for signaling in response to a variety of stimuli.


2000 ◽  
Vol 20 (5) ◽  
pp. 1537-1545 ◽  
Author(s):  
Elena Becker ◽  
Uyen Huynh-Do ◽  
Sacha Holland ◽  
Tony Pawson ◽  
Tom O. Daniel ◽  
...  

ABSTRACT The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62 dok , RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62 dok most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.


1999 ◽  
Vol 10 (11) ◽  
pp. 3729-3743 ◽  
Author(s):  
Michael L. Sohaskey ◽  
James E. Ferrell

Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A–like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.


2015 ◽  
Vol 27 (7) ◽  
pp. 1097 ◽  
Author(s):  
Kateřina Kheilová ◽  
Jaroslav Petr ◽  
Tereza Žalmanová ◽  
Veronika Kučerová-Chrpová ◽  
Dalibor Řehák

Mammalian meiotic maturation is regulated by changes in the phosphorylation state of proteins involved in signalling pathways. The regulatory proteins include the family of Src tyrosine kinases. Src family kinases (SFKs) are required for meiotic maturation of mouse oocytes, and it remains to be elucidated whether they play the same role in porcine oocytes. To clarify the role of SFKs in the meiotic maturation of porcine oocytes we used inhibition of SFKs, western blotting and immunolocalisation to determine the presence of SFKs and localisation in the oocytes and assays to determine the activity of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Inhibition of SFKs resulted in the disruption of oocyte maturation and led to a decline in MPF and MAPK activity. The fluorescence intensity of SFKs in the cytoplasm and membrane of MI oocytes decreased significantly compared with germinal vesicle oocytes. The highest fluorescence intensity for SFKs was detected on the membrane of MII oocytes. Only weak fluorescence was detected in the perichromosomal area of MI and MII oocytes. These results prove that SFKs play an active role in the meiotic maturation of porcine oocytes by regulating MPF and MAPK activity.


2018 ◽  
Author(s):  
Ryouhei Tsutsumi ◽  
Hao Ran ◽  
Benjamin G. Neel

AbstractDue to the involvement of SHP2 (SH2 domain-containing protein tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC-78788 does not exhibit robust inhibitory effects on growth factor-dependent MAPK (mitogen-activated protein kinase) pathway activation, and that the recently developed active site-targeting SHP2 inhibitors IIB-08, 11a-1, and GS-493 show off-target effects on ligand-evoked activation/trans-phosphorylation of the PDGFRβ (platelet-derived growth factor receptor β). GS-493 also inhibits purified human PDGFRβ and SRC in vitro, whereas PDGFRβ inhibition by IIB-08 and 11a-1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors.


2018 ◽  
Vol 19 (10) ◽  
pp. 3282 ◽  
Author(s):  
Eric Dietel ◽  
Alexander Brobeil ◽  
Stefan Gattenlöhner ◽  
Monika Wimmer

The protein tyrosine phosphatase interacting protein 51 (PTPIP51) regulates and interconnects signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway and an abundance of different others, e.g., Akt signaling, NF-κB signaling, and the communication between different cell organelles. PTPIP51 acts as a scaffold protein for signaling proteins, e.g., Raf-1, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (Her2), as well as for other scaffold proteins, e.g., 14-3-3 proteins. These interactions are governed by the phosphorylation of serine and tyrosine residues of PTPIP51. The phosphorylation status is finely tuned by receptor tyrosine kinases (EGFR, Her2), non-receptor tyrosine kinases (c-Src) and the phosphatase protein tyrosine phosphatase 1B (PTP1B). This review addresses various diseases which display at least one alteration in these enzymes regulating PTPIP51-interactions. The objective of this review is to summarize the knowledge of the MAPK-related interactome of PTPIP51 for several tumor entities and metabolic disorders.


2005 ◽  
Vol 25 (2) ◽  
pp. 819-829 ◽  
Author(s):  
Sandra Galic ◽  
Christine Hauser ◽  
Barbara B. Kahn ◽  
Fawaz G. Haj ◽  
Benjamin G. Neel ◽  
...  

ABSTRACT The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.


2004 ◽  
Vol 24 (6) ◽  
pp. 2308-2317 ◽  
Author(s):  
Scott T. Eblen ◽  
Jill K. Slack-Davis ◽  
Adel Tarcsafalvi ◽  
J. Thomas Parsons ◽  
Michael J. Weber ◽  
...  

ABSTRACT Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.


2002 ◽  
Vol 87 (05) ◽  
pp. 888-898 ◽  
Author(s):  
Stefania Gaino ◽  
Valeria Zuliani ◽  
Rosa Tommasoli ◽  
Donatella Benati ◽  
Riccardo Ortolani ◽  
...  

SummaryWe investigated similarities in the signaling pathways elicited by the F2 isoprostane 8-iso-PGF2α and by low doses of U46619 to induce platelet activation. Both 0.01-0.1 µmol/L U46619 and 0.01-1 µmol/L 8-isoPGF2α triggered shape change and filopodia extension, as well as adhesion to immobilized fibrinogen of washed platelets. At these doses the two platelet agonists failed to trigger secretion and aggregation, which were however induced by higher doses of U46619 (0.1-1 µmol/L). SB203580 (1-10 µmol/L), a specific inhibitor of the p38 mitogen activated protein (MAP) kinase blunted platelet shape change and adhesion induced by 0.05-1 µmol/L 8-iso-PGF2α and by 0.01 µmol/L U46619. These platelet responses were also inhibited by 20 µmol/L cytochalasin D, an inhibitor of actin polymerization, and 50 µmol/L piceatannol, an inhibitor of the Syk tyrosine kinases. Both 8-iso-PGF2α and U46619-induced p38 MAP kinase phosphorylation in suspended platelets and this was inhibited by piceatannol, indicating that Syk activation occurs upstream p38 MAP kinase phosphorylation. These findings suggest that the signaling pathway triggered by both 8-iso-PGF2α and low concentrations of U46619 to induce platelet adhesion and shape change implicates Syk, the p38 MAP kinase, and actin polymerization.


Blood ◽  
2010 ◽  
Vol 116 (3) ◽  
pp. 428-436 ◽  
Author(s):  
Gurpreet K. Lakhanpal ◽  
Laura M. Vecchiarelli-Federico ◽  
You-Jun Li ◽  
Jiu-Wei Cui ◽  
Monica L. Bailey ◽  
...  

Abstract The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)–induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV–infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K–dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.


Sign in / Sign up

Export Citation Format

Share Document