mapk phosphatases
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 22 (22) ◽  
pp. 12595
Author(s):  
Emma Marie Wilber Hepworth ◽  
Shantá D. Hinton

Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.


2021 ◽  
Author(s):  
Zahra Ayatollahi ◽  
Vaiva Kazanaviciute ◽  
Volodymyr Shubchynskyy ◽  
Kotryna Kvederaviciute ◽  
Manfred Schwanninger ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific phosphatases of the type 2C Ser/Thr protein phosphatase (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. Our work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant and ap2c1 mkp1 double mutant displayed enhanced wound-induced activation of MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants show an autoimmune-like response, associated with elevated levels the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. Interestingly, this phenotype is reduced in ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MPK6 misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MPK6 activity, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.


2020 ◽  
Vol 494 ◽  
pp. 94-106
Author(s):  
Wen Peng ◽  
Chuan Zhang ◽  
Jianing Peng ◽  
Yuanjian Huang ◽  
Chaofan Peng ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Ganesan Senthil Kumar ◽  
Rebecca Page ◽  
Wolfgang Peti

ABSTRACTMitogen-activated protein kinase (MAPK; p38, ERK and JNK) cascades are evolutionarily conserved signaling pathways that regulate the cellular response to a variety of extracellular stimuli, such as growth factors and interleukins. The MAPK p38 is activated by its specific upstream MAPK kinases, MKK6 and MKK3. However, a comprehensive molecular understanding of how these cognate upstream kinases bind and activate p38 is still missing. Here, we combine NMR spectroscopy and isothermal titration calorimetry to define the binding interface between full-length MKK6 and p38. We show that p38 engages MKK6 not only via its hydrophobic docking groove, but also helix αF, a secondary structural element that plays a key role in organizing the kinase core. We also show that, unlike MAPK phosphatases, the p38 conserved docking (CD) site is much less affected by MKK6 binding. Finally, we demonstrate that these interactions with p38 are conserved independent of the MKK6 activation state. Together, our results reveal differences between specificity markers of p38 regulation by upstream kinases, which do not effectively engage the CD site, and downstream phosphatases, which require the CD site for productive binding.


2020 ◽  
Author(s):  
Sara Kimiko Suzuki ◽  
Beverly Errede ◽  
Henrik G. Dohlman ◽  
Timothy C. Elston

AbstractCells rely on mitogen-activated protein kinases (MAPKs) to survive environmental stress. In yeast, activation of the MAPK Hog1 is known to mediate the response to high osmotic conditions. Recent studies of Hog1 revealed that its temporal activity is subject to both negative and positive feedback regulation, yet the mechanisms of feedback remain unclear. By designing mathematical models of increasing complexity for the Hog1 MAPK cascade, we identified pathway circuitry sufficient to capture Hog1 dynamics observed in vivo. We used these models to optimize experimental designs for distinguishing potential feedback loops. Performing experiments based on these models revealed mutual inhibition between Hog1 and its phosphatases as the likely positive feedback mechanism underlying switch-like, dose-dependent MAPK activation. Importantly, our findings reveal a new signaling function for MAPK phosphatases. More broadly, they demonstrate the value using mathematical models to infer targets of feedback regulation in signaling pathways.


2019 ◽  
Vol 20 (5) ◽  
pp. 1170 ◽  
Author(s):  
Caroline Nunes-Xavier ◽  
Laura Zaldumbide ◽  
Olaia Aurtenetxe ◽  
Ricardo López-Almaraz ◽  
José López ◽  
...  

Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.


2019 ◽  
Vol 116 (10) ◽  
pp. 4583-4591 ◽  
Author(s):  
Romi Gupta ◽  
Suresh Bugide ◽  
Biao Wang ◽  
Michael R. Green ◽  
Douglas B. Johnson ◽  
...  

Acquired resistance to BRAF kinase inhibitors (BRAFi) is the primary cause for their limited clinical benefit. Although several mechanisms of acquired BRAFi resistance have been identified, the basis for acquired resistance remains unknown in over 40% of melanomas. We performed a large-scale short-hairpin RNA screen, targeting 363 epigenetic regulators and identified Block of Proliferation 1 (BOP1) as a factor the loss of which results in resistance to BRAFi both in cell culture and in mice.BOP1knockdown promoted down-regulation of the MAPK phosphatases DUSP4 and DUSP6 via a transcription-based mechanism, leading to increased MAPK signaling and BRAFi resistance. Finally, analysis of matched patient-derived BRAFi or BRAFi+MEKi pre- and progressed melanoma samples revealed reduced BOP1 protein expression in progressed samples. Collectively, our results demonstrate that loss of BOP1 and the resulting activation of the MAPK pathway is a clinically relevant mechanism for acquired resistance to BRAFi in melanoma.


2017 ◽  
Vol 45 (2) ◽  
pp. 381-387 ◽  
Author(s):  
Arya Dahal ◽  
Shantá D. Hinton

Mitogen-activated protein kinases (MAPKs) are essential players in important neuronal signaling pathways including neuronal development, plasticity, survival, learning, and memory. The inactivation of MAPKs is tightly controlled by MAPK phosphatases (MKPs), which also are important regulators of these neuronal processes. Considering that MAPKs and MKPs are major players in neuronal signaling, it follows that their misregulation is pivotal in neurodegenerative diseases such as Alzheimer's, Huntington's, Parkinson's, and amyotrophic lateral sclerosis. In contrast, the actions of their noncatalytic homologs, or pseudoenzymes, have received minimal attention as important regulators in neuronal signaling pathways and relevant diseases. There is compelling evidence, however, that pseudophosphatases, such as STYX (phospho-serine–threonine/tyrosine-binding protein) and MAPK-STYX (MK-STYX), are integral signaling molecules in regulating pathways involved in neuronal developmental processes such as neurite outgrowth. Here, we discuss how the dynamics of MK-STYX in the stress response pathway imply that this unique member of the MKP subfamily has the potential to have a major role in neuronal signaling. We further compare the actions of STYX in preventing neurite-like outgrowths and MK-STYX in inducing neurite outgrowths. The roles of these pseudophosphatases in neurite outgrowth highlight their emergence as important candidates to investigate in neurodegenerative disorders and diseases.


Sign in / Sign up

Export Citation Format

Share Document