Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics

2002 ◽  
Vol 115 (8) ◽  
pp. 1703-1715 ◽  
Author(s):  
Derek T. Warren ◽  
Paul D. Andrews ◽  
Campbell W. Gourlay ◽  
Kathryn R. Ayscough

Sla1p is a protein required for cortical actin patch structure and organisation in budding yeast. Here we use a combination of immunofluorescence microscopy and biochemical approaches to demonstrate interactions of Sla1p both with proteins regulating actin dynamics and with proteins required for endocytosis. Using Sla1p-binding studies we reveal association of Sla1p with two proteins known to be important for activation of the Arp2/3 complex in yeast, Abp1p and the yeast WASP homologue Las17p/Bee1p. A recent report of Sla1p association with Pan1p puts Sla1p in the currently unique position of being the only yeast protein known to interact with all three known Arp2/3-activating proteins in yeast. Localisation of Sla1p at the cell cortex is, however, dependent on the EH-domain-containing protein End3p, which is part of the yeast endocytic machinery. Using spectral variants of GFP on Sla1p(YFP) and on Abp1p (CFP) we show for the first time that these proteins can exist in discrete complexes at the cell cortex. However, the detection of a significant FRET signal means that these proteins also come close together in a single complex, and it is in this larger complex that we propose that Sla1p binding to Abp1p and Las17p/Bee1p is able to link actin dynamics to the endocytic machinery. Finally, we demonstrate marked defects in both fluid-phase and receptor-mediated endocytosis in cells that do not express SLA1, indicating that Sla1p is central to the requirement in yeast to couple endocytosis with the actin cytoskeleton.

2002 ◽  
Vol 13 (10) ◽  
pp. 3646-3661 ◽  
Author(s):  
H. Dewar ◽  
D. T. Warren ◽  
F. C. Gardiner ◽  
C. G. Gourlay ◽  
N. Satish ◽  
...  

The importance of coupling the process of endocytosis to factors regulating actin dynamics has been clearly demonstrated in yeast, and many proteins involved in these mechanisms have been identified and characterized. Here we demonstrate the importance of two additional cortical components, Ysc84p and Lsb5p, which together are essential for the organization of the actin cytoskeleton and for fluid phase endocytosis. Both Ysc84p and Lsb5p were identified through two-hybrid screens with different domains of the adaptor protein Sla1p. Ysc84p colocalizes with cortical actin and requires the presence of an intact actin cytoskeleton for its cortical localization. Ycl034w/Lsb5p localizes to the cell cortex but does not colocalize with actin. The Lsb5 protein contains putative VHS and GAT domains as well as an NPF motif, which are all domains characteristic of proteins involved in membrane trafficking. Deletion of either gene alone does not confer any dramatic phenotype on cells. However, deletion of both genes is lethal at elevated temperatures. Furthermore, at all temperatures this double mutant has depolarized actin and an almost undetectable level of fluid phase endocytosis. Our data demonstrate that Ysc84p and Lsb5p are important components of complexes involved in overlapping pathways coupling endocytosis with the actin cytoskeleton in yeast.


1998 ◽  
Vol 142 (5) ◽  
pp. 1289-1299 ◽  
Author(s):  
Lisa D. Belmont ◽  
David G. Drubin

Actin with a Val 159 to Asn mutation (V159N) forms actin filaments that depolymerize slowly because of a failure to undergo a conformational change after inorganic phosphate release. Here we demonstrate that expression of this actin results in reduced actin dynamics in vivo, and we make use of this property to study the roles of rapid actin filament turnover. Yeast strains expressing the V159N mutant (act1-159) as their only source of actin have larger cortical actin patches and more actin cables than wild-type yeast. Rapid actin dynamics are not essential for cortical actin patch motility or establishment of cell polarity. However, fluid phase endocytosis is defective in act1-159 strains. act1-159 is synthetically lethal with cofilin and profilin mutants, supporting the conclusion that mutations in all of these genes impair the polymerization/ depolymerization cycle. In contrast, act1-159 partially suppresses the temperature sensitivity of a tropomyosin mutant, and the loss of cytoplasmic cables seen in fimbrin, Mdm20p, and tropomyosin null mutants, suggesting filament stabilizing functions for these actin-binding proteins. Analysis of the cables in these double-mutant cells supports a role for fimbrin in organizing cytoplasmic cables and for Mdm20p and tropomyosin in excluding cofilin from the cables.


2005 ◽  
Vol 33 (6) ◽  
pp. 1273-1275 ◽  
Author(s):  
R. Costa ◽  
K.R. Ayscough

Endocytosis is critical for controlling the protein–lipid composition of the plasma membrane, uptake of nutrients as well as pathogens, and also plays an important role in regulation of cell signalling. While a number of pathways for endocytosis have been characterized in different organisms, all of these require remodelling of the cell cortex. The importance of a dynamic actin cytoskeleton for facilitating endocytosis has been recognized for many years in budding yeast, and is increasingly supported by studies in mammalian cells. Our studies have focused on proteins that we have shown to act at the interface between the actin cytoskeleton and the endocytic machinery. In particular, we have studied interactions of Sla1p, which binds to both activators of actin dynamics, i.e. Abp1p, Las17p and Pan1p, and to cargo proteins such as the pheromone receptor Ste2p. More recently we have mapped the interaction of Sla1p with Lsb5p, a protein that has a similar structure to the GGA [Golgi-localizing, γ-adaptin ear homology domain, Arf (ADP-ribosylation factor)-binding] family of proteins with an N-terminal VHS (Vps27p/Hrs/STAM)-domain and a GAT (GGAs and TOM1) domain. We show that Lsb5p can interact with yeast Arf3p (orthologous with mammalian Arf6) and we demonstrate a requirement for Arf3p expression in order to localize Lsb5p to the cell cortex.


2010 ◽  
Vol 21 (20) ◽  
pp. 3529-3539 ◽  
Author(s):  
Tim Ting Chiu ◽  
Nish Patel ◽  
Alisa E. Shaw ◽  
James R. Bamburg ◽  
Amira Klip

GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.


2020 ◽  
Author(s):  
Jorge Ibañez-Vega ◽  
Felipe Del Valle ◽  
Juan José Saez ◽  
Jheimmy Diaz ◽  
Andrea Soza ◽  
...  

AbstractThe formation of an immune synapse (IS) enables B cells to capture membrane-tethered antigens, where cortical actin cytoskeleton remodeling regulates cell spreading and depletion of F-actin at the centrosome promotes the recruitment of lysosomes to facilitate antigen extraction. How B cells regulate both pools of actin, remains poorly understood. We report here that decreased F-actin at the centrosome and IS relies on the distribution of the proteasome, regulated by Ecm29. Silencing Ecm29 decreases the proteasome pool associated to the centrosome of B cells and shifts its accumulation to the cell cortex and IS. Accordingly, Ecm29-silenced B cells display increased F-actin at the centrosome, impaired centrosome and lysosome repositioning to the IS and defective antigen extraction and presentation. Ecm29-silenced B cells, which accumulate higher levels of proteasome at the cell cortex, display decreased actin retrograde flow in lamellipodia and enhanced spreading responses. Our findings support a model where B the asymmetric distribution of the proteasome, mediated by Ecm29, coordinates actin dynamics at the centrosome and the IS, promoting lysosome recruitment and cell spreading.


2005 ◽  
Vol 387 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Rosaria COSTA ◽  
Derek T. WARREN ◽  
Kathryn R. AYSCOUGH

The importance of coupling the process of endocytosis to factors that regulate actin dynamics has been clearly demonstrated in yeast, and many proteins involved in these mechanisms have been identified. Sla1p is a well-characterized yeast protein that binds both to activators of actin dynamics, Las17p and Pan1p, and to cargo proteins, such as the pheromone receptor Ste2p. Previously, we reported that the Lsb5 protein plays a role in endocytosis in yeast and that it localizes to the plasma membrane. Lsb5p has a similar structure to the GGA [Golgi-localized, γ-ear-containing, Arf (ADP-ribosylation factor)-binding] family of proteins with an N-terminal VHS [Vps27p (vacuolar protein sorting protein 27), Hrs, Stam] domain and a GAT (GGA and Tom1) domain. It does not, however, contain either a γ-adaptin ear or a clathrin-binding motif. In the present study, we have further defined its interaction site with both Sla1p and with Las17p, two regulators of actin dynamics. The site of interaction with Sla1p involves the Sla1 HD1 (homology domain 1), which also was shown previously to interact with the pheromone receptor Ste2p. We also demonstrate hitherto unknown interactions between Lsb5p and the active form of the yeast Arf3 protein, and with ubiquitin. Finally, we demonstrate a requirement for Arf3p expression in order to localize Lsb5p to the correct cortical site in cells. Taken together, our data provide further evidence for the role of Lsb5p in membrane-trafficking events at the plasma membrane and also demonstrate for the first time an interaction of Arf3 with the endocytic machinery in yeast.


1999 ◽  
Vol 146 (2) ◽  
pp. 453-464 ◽  
Author(s):  
Angelika Konzok ◽  
Igor Weber ◽  
Evelyn Simmeth ◽  
Ulrike Hacker ◽  
Markus Maniak ◽  
...  

The 64-kD protein DAip1 from Dictyostelium contains nine WD40-repeats and is homologous to the actin-interacting protein 1, Aip1p, from Saccharomyces cerevisiae, and to related proteins from Caenorhabditis, Physarum, and higher eukaryotes. We show that DAip1 is localized to dynamic regions of the cell cortex that are enriched in filamentous actin: phagocytic cups, macropinosomes, lamellipodia, and other pseudopodia. In cells expressing green fluorescent protein (GFP)-tagged DAip1, the protein rapidly redistributes into newly formed cortical protrusions. Functions of DAip1 in vivo were assessed using null mutants generated by gene replacement, and by overexpressing DAip1. DAip1-null cells are impaired in growth and their rates of fluid-phase uptake, phagocytosis, and movement are reduced in comparison to wild-type rates. Cytokinesis is prolonged in DAip1-null cells and they tend to become multinucleate. On the basis of similar results obtained by DAip1 overexpression and effects of latrunculin-A treatment, we propose a function for DAip1 in the control of actin depolymerization in vivo, probably through interaction with cofilin. Our data suggest that DAip1 plays an important regulatory role in the rapid remodeling of the cortical actin meshwork.


2002 ◽  
Vol 13 (8) ◽  
pp. 2607-2625 ◽  
Author(s):  
Kenneth R. Henry ◽  
Kathleen D'Hondt ◽  
JiSuk Chang ◽  
Thomas Newpher ◽  
Kristen Huang ◽  
...  

SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but anscd5-Δ338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Δ338affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Δ338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars.scd5-Δ338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression ofSCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Δ338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 707-719 ◽  
Author(s):  
Alison Care ◽  
Katherine A Vousden ◽  
Katie M Binley ◽  
Pippa Radcliffe ◽  
Janet Trevethick ◽  
...  

Abstract Saccharomyces cerevisiae whi2Δ cells are unable to halt cell division in response to nutrient limitation and are sensitive to a wide variety of stresses. A synthetic lethal screen resulted in the isolation of siw mutants that had a phenotype similar to that of whi2Δ. Among these were mutations affecting SIW14, FEN2, SLT2, and THR4. Fluid-phase endocytosis is severely reduced or abolished in whi2Δ, siw14Δ, fen2Δ, and thr4Δ mutants. Furthermore, whi2Δ and siw14Δ mutants produce large actin clumps in stationary phase similar to those seen in prk1Δ ark1Δ mutants defective in protein kinases that regulate the actin cytoskeleton. Overexpression of SIW14 in a prk1Δ strain resulted in a loss of cortical actin patches and cables and was lethal. Overexpression of SIW14 also rescued the caffeine sensitivity of the slt2 mutant isolated in the screen, but this was not due to alteration of the phosphorylation state of Slt2. These observations suggest that endocytosis and the organization of the actin cytoskeleton are required for the proper response to nutrient limitation. This hypothesis is supported by the observation that rvs161Δ, sla1Δ, sla2Δ, vrp1Δ, ypt51Δ, ypt52Δ, and end3Δ mutations, which disrupt the organization of the actin cytoskeleton and/or reduce endocytosis, have a phenotype similar to that of whi2Δ mutants.


2012 ◽  
Vol 23 (17) ◽  
pp. 3485-3497 ◽  
Author(s):  
Guisheng Zeng ◽  
Yan-Ming Wang ◽  
Yue Wang

A dynamic balance between targeted transport and endocytosis is critical for polarized cell growth. However, how actin-mediated endocytosis is regulated in different growth modes remains unclear. Here we report differential regulation of cortical actin patch dynamics between the yeast and hyphal growth in Candida albicans. The mechanism involves phosphoregulation of the endocytic protein Sla1 by the cyclin-dependent kinase (CDK) Cdc28–Cln3 and the actin-regulating kinase Prk1. Mutational studies of the CDK phosphorylation sites of Sla1 revealed that Cdc28–Cln3 phosphorylation of Sla1 enhances its further phosphorylation by Prk1, weakening Sla1 association with Pan1, an activator of the actin-nucleating Arp2/3 complex. Sla1 is rapidly dephosphorylated upon hyphal induction and remains so throughout hyphal growth. Consistently, cells expressing a phosphomimetic version of Sla1 exhibited markedly reduced actin patch dynamics, impaired endocytosis, and defective hyphal development, whereas a nonphosphorylatable Sla1 had the opposite effect. Taken together, our findings establish a molecular link between CDK and a key component of the endocytic machinery, revealing a novel mechanism by which endocytosis contributes to cell morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document