Synthesis and Secretion of Growth Hormone in the Rat Anterior Pituitary

1973 ◽  
Vol 12 (1) ◽  
pp. 1-21
Author(s):  
S. L. HOWELL ◽  
MARGARET WHITFIELD

The intracellular processes involved in synthesis, transport and storage of newly synthesized proteins in the rat somatotroph, together with their time course and metabolic requirements, have been investigated in a quantitative electron-microscopic radioautography study of the tissue following pulse labelling with tritium-labelled amino acids and chase incubations in various conditions. Proteins are synthesized initially on the rough-surfaced elements of the endoplasmic reticulum and are transported within 10 min after their synthesis to transitional areas between the rough-surfaced endoplasmic reticulum and Golgi complex. Transfer to the Golgi lamellae is achieved, probably via transfer vesicles, within about 60 min after synthesis, while formation of mature storage granules occurs within 2 h following protein synthesis. Further experiments utilizing cycloheximide or ouabain during the chase incubations showed that the intracellular transport of newly synthesized protein and its time course are not significantly affected by inhibitors of protein synthesis, or by inhibition of sodium-potassium dependent ATPase by ouabain. Inhibitors of oxidative phosphorylation (250 µM 2,4-dinitrophenol) or of respiration (10 µM antimycin A) markedly reduced intracellular ATP levels and inhibited the intracellular transport processes. The requirement for ATP appeared to be operative at 2 stages: in the movement of transfer vesicles to the Golgi complex and in the formation of storage granules; possible roles of ATP in these processes are discussed.

1971 ◽  
Vol 50 (1) ◽  
pp. 135-158 ◽  
Author(s):  
James D. Jamieson ◽  
George E. Palade

Our previous observations on the synthesis and transport of secretory proteins in the pancreatic exocrine cell were made on pancreatic slices from starved guinea pigs and accordingly apply to the resting, unstimulated cell. Normally, however, the gland functions in cycles during which zymogen granules accumulate in the cell and are subsequently discharged from it in response to secretogogues. The present experiments were undertaken to determine if secretory stimuli applied in vitro result in adjustments in the rates of protein synthesis and/or of intracellular transport. To this intent pancreatic slices from starved animals were stimulated in vitro for 3 hr with 0.01 mM carbamylcholine. During the first hour of treatment the acinar lumen profile is markedly enlarged due to insertion of zymogen granule membranes into the apical plasmalemma accompanying exocytosis of the granule content. Between 2 and 3 hr of stimulation the luminal profile reverts to unstimulated dimensions while depletion of the granule population nears completion. The acinar cells in 3-hr stimulated slices are characterized by the virtual complete absence of typical condensing vacuoles and zymogen granules, contain a markedly enlarged Golgi complex consisting of numerous stacked cisternae and electron-opaque vesicles, and possess many small pleomorphic storage granules. Slices in this condition were pulse labeled with leucine-3H and the route and timetable of intracellular transport assessed during chase incubation by cell fractionation, electron microscope radioautography, and a discharge assay covering the entire secretory pathway. The results showed that the rate of protein synthesis, the rate of drainage of the rough-surfaced endoplasmic reticulum (RER) compartment, and the over-all transit time of secretory proteins through the cells was not accelerated by the secretogogue. Secretory stimulation did not lead to a rerouting of secretory proteins through the cell sap. In the resting cell, the secretory product is concentrated in condensing vacuoles and stored as a relatively homogeneous population of spherical zymogen granules. By contrast, in the stimulated cell, secretory proteins are initially concentrated in the flattened saccules of the enlarged Golgi complex and subsequently stored in numerous small storage granules before release. The results suggest that secretory stimuli applied in vitro primarily affect the discharge of secretory proteins and do not, directly or indirectly, influence their rates of synthesis and intracellular transport.


1981 ◽  
Vol 90 (1) ◽  
pp. 92-100 ◽  
Author(s):  
DA Brodie

Golgi complex beads are 10-nm particles arranged in rings on the smooth surface of rough endoplasmic reticulum (ER) makind the forming face of the Golgi complex (GC). In arthropod cells they stain specifically with bismuth. Their morphology has been studied after treatment with reagents known to interfere with GC function. Inhibitors of oxidative phosphorylation (antimycin A, cyanide, and anoxia), but not an inhibitor of glycolysis (iodoacetate), both cause the bead rings to collapse and the GC saccules to round up, and inhibit transition vesicle (TV) formation. Cycloheximide blocks protein synthesis on ribosomes but does not stop TV formation or disrupt bead rings, even after prolonged treatment (6 h) to allow emptying of the rough ER cisternae. Thus the collapse of bead rings is not attributable to inhibition of protein synthesis, and the ring structure of beads does not require continued protein synthesis and secretion for its maintenance. Valinomycin has effects on the GC similar to those of antimycin A, but A23187, monensin, and lasalocid do not affect bead ring structure or TV formation. These results are consistent with valinomycin's secondarily uncoupling mitochondria, which collapses bead rings and prevents TV formation. Thus inhibitors of oxidative phosphorylation do not influence the beads through cation movement. Because mononsin and lasalocid block secretion at the level of the condensing vacuoles, bead rings are not influenced by blocks in secretion distal to them or by the backup of secretory material. These experiments are consistent with inhibitors of oxidative phosphorylation collapsing bead rings by decreasing intracellular ATP. The concomitant block to TV formation and the collapse of bead rings suggests that integrity of the bead rings is essential for the transport of secretory material from the rough ER to the GC.


1986 ◽  
Vol 237 (1) ◽  
pp. 33-39 ◽  
Author(s):  
E Fries ◽  
I Lindström

Isolated rat hepatocytes were pulse-labelled with [35S]methionine at 37 degrees C and subsequently incubated (chased) for different periods of time at different temperatures (37-16 degrees C). The time courses for the secretion of [35S]methionine-labelled albumin and haptoglobin were determined by quantitative immunoprecipitation of the detergent-solubilized cells and of the chase media. Both proteins appeared in the chase medium only after a lag period, the length of which increased markedly with decreasing chase temperature: from about 10 and 20 min at 37 degrees C to about 60 and 120 min at 20 degrees C for albumin and haptoglobin respectively. The rates at which the proteins were externalized after the lag period were also strongly affected by temperature, the half-time for secretion being 20 min at 37 degrees C and 200 min at 20 degrees C for albumin; at 16 degrees C no secretion could be detected after incubation for 270 min. Analysis by subcellular fractionation showed that part of the lag occurred in the endoplasmic reticulum and that the rate of transfer to the Golgi complex was very temperature-dependent. The maximum amount of the two pulse-labelled proteins in Golgi fractions prepared from cells after different times of chase decreased with decreasing incubation temperatures, indicating that the transport from the Golgi complex to the cell surface was less affected by low temperatures than was the transport from the endoplasmic reticulum to the Golgi complex.


1964 ◽  
Vol 20 (3) ◽  
pp. 473-495 ◽  
Author(s):  
Lucien G. Caro ◽  
George E. Palade

The synthesis, intracellular transport, storage, and discharge of secretory proteins in and from the pancreatic exocrine cell of the guinea pig were studied by light- and electron microscopical autoradiography using DL-leucine-4,5-H3 as label. Control experiments were carried out to determine: (a) the length of the label pulse in the blood and tissue after intravenous injections of leucine-H3; (b) the amount and nature of label lost during tissue fixation, dehydration, and embedding. The results indicate that leucine-H3 can be used as a label for newly synthesized secretory proteins and as a tracer for their intracellular movements. The autoradiographic observations show that, at ∼5 minutes after injection, the label is localized mostly in cell regions occupied by rough surfaced elements of the endoplasmic reticulum; at ∼20 minutes, it appears in elements of the Golgi complex; and after 1 hour, in zymogen granules. The evidence conclusively shows that the zymogen granules are formed in the Golgi region by a progressive concentration of secretory products within large condensing vacuoles. The findings are compatible with an early transfer of label from the rough surfaced endoplasmic reticulum to the Golgi complex, and suggest the existence of two distinct steps in the transit of secretory proteins through the latter. The first is connected with small, smooth surfaced vesicles situated at the periphery of the complex, and the second with centrally located condensing vacuoles.


1962 ◽  
Vol 13 (1) ◽  
pp. 127-146 ◽  
Author(s):  
G. Adolph Ackerman

Electron microscopic studies of the bursa of Fabricius during the 15th and 16th day of embryonic development in the chick have shown the following findings in the submicroscopic structure of the cellular elements of the lympho-epithelial follicles. In the medulla, basal endodermal epithelial cells undergo mitosis and differentiation into lymphoblasts. During this transformation, there is a reduction in the amount of rough endoplasmic reticulum, an increase in the number or ribosomes, and frequently an enlargement of the Golgi complex. As lymphoblasts differentiate into medium lymphocytes there is a loss of endoplasmic reticulum, a reduction in the number of ribosomes and in the size of the Golgi complex, as well as a decrease in the number and size of mitochondria and in the size of the cell and nucleus. Cytoplasmic processes of reticular-epithelial cells extend between proliferating lymphocytic cells. Desmosomes connect stellate reticular-epithelial and basal epithelial cells but are not present in lymphocytic cells. Nuclear blebbing and vesiculation are frequently observed in the various cell forms of the developing lympho-epithelial nodules. Although lymphocytes and lymphocytopoietic activities in the cortex are sparse during this stage of embryonic development of the bursa, transitional forms between mesenchymal cells and lymphoblasts have been encountered. In addition, lymphoblasts and/or undifferentiated epithelial cells occasionally may pass through the basement membrane from the medulla into the cortical region of the developing nodule. That lymphocytes in the bursa of Fabricius originate from both endodermal and mesodermal derivatives during embryonic development appears to be consistent with both light and electron microscopic observations.


1972 ◽  
Vol 53 (2) ◽  
pp. 290-311 ◽  
Author(s):  
J. David Castle ◽  
James D. Jamieson ◽  
George E. Palade

Intracellular transport of secretory proteins has been studied in the parotid to examine this process in an exocrine gland other than the pancreas and to explore a possible source of less degraded membranes than obtainable from the latter gland. Rabbit parotids were chosen on the basis of size (2–2.5 g per animal), ease of surgical removal, and amylase concentration. Sites of synthesis, rates of intracellular transport, and sites of packaging and storage of newly synthesized secretory proteins were determined radioautographically by using an in vitro system of dissected lobules capable of linear amino acid incorporation for 10 hr with satisfactory preservation of cellular fine structure. Adequate fixation of the tissue with minimal binding of unincorporated labeled amino acids was obtained by using 10% formaldehyde-0.175 M phosphate buffer (pH 7.2) as primary fixative. Pulse labeling with leucine-3H, followed by a chase incubation, showed that the label is initially located (chase: 1–6 min) over the rough endoplasmic reticulum (RER) and subsequently moves as a wave through the Golgi complex (chase: 16–36 min), condensing vacuoles (chase: 36–56 min), immature granules (chase: 56–116 min), and finally mature storage granules (chase: 116–356 min). Distinguishing features of the parotid transport apparatus are: low frequency of RER-Golgi transitional elements, close association of condensing vacuoles with the exit side of Golgi stacks, and recognizable immature secretory granules. Intracelular processing of secretory proteins is similar to that already found in the pancreas, except that the rate is slower and the storage is more prolonged.


1989 ◽  
Vol 92 (2) ◽  
pp. 173-185
Author(s):  
J.D. Judah ◽  
K.E. Howell ◽  
J.A. Taylor ◽  
P.S. Quinn

In this paper we show that hepatocytes that have been depleted of K+ secrete albumin, alpha-1-anti-trypsin and transferrin at a slower rate than cells to which K+ has been returned. K+ depletion has no effect on the intracellular nucleotide pools, and we provide evidence that the inhibitions of secretion caused by depletion of K+ and depletion of ATP are independent. Studies of the processing of alpha-1-anti-trypsin show that K+ depletion inhibits the formation of the mature form of the protein, but that immature forms are never secreted. In cells to which K+ was returned, secretion of the mature form was restored. This implies that transport is blocked at a point before the proteins reach the processing enzymes. Proteins delayed by K+ depletion are not removed from the secretory pathway, but are free to mix with protein synthesized subsequently. These data are supported by subcellular fractionation experiments, which show that the secretory proteins are delayed before reaching the Golgi complex, and by immunoelectron microscopic studies. These show that in K+-deficient cells the morphology of both the endoplasmic reticulum and the Golgi complex is normal. The secretory proteins are trapped in smooth vesicles that contain reaction product when incubated for glucose-6-phosphatase, a marker for the endoplasmic reticulum.


1995 ◽  
Vol 43 (9) ◽  
pp. 907-915 ◽  
Author(s):  
Y Deng ◽  
J R Bennink ◽  
H C Kang ◽  
R P Haugland ◽  
J W Yewdell

The fungal metabolite brefeldin A (BFA) interferes with vesicular trafficking in most animal cells. To gain insight into the mechanism of BFA action, we esterified it to the fluorophore, boron dipyromethene difluoride (BODIPY). BODIPY-BEA localized predominantly in the endoplasmic reticulum (ER) and Golgi complex of viable cells and was extracted by detergent treatment, suggesting it interacts primarily with lipid bilayers. The localization of the conjugate is conferred by BFA, since free BODIPY or BODIPY esterified to cyclopentanol did not specifically localize to internal membranes. BODIPY-BFA exhibited a similar biological activity to BFA, but only when used at higher concentrations and after a delay. HPLC analysis revealed that over this period, cells converted BODIPY-BFA to species co-eluting with free BODIPY and BFA. Therefore, BODIPY-BFA is probably inactive until BFA is released by cellular esterases. The specific localization of BODIPY-BFA to the ER and Golgi complex suggests that BFA might exert its effects on vesicular trafficking by perturbing the lipid bilayer of its target organelles. Because BODIPY-BFA intensely stains the ER at concentrations that have no discernible effects on intracellular transport or other cellular functions, it should be useful for visualizing the ER in living cells.


1959 ◽  
Vol 5 (3) ◽  
pp. 441-452 ◽  
Author(s):  
David B. Slautterback ◽  
Don W. Fawcett

The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.


Sign in / Sign up

Export Citation Format

Share Document