Adhesion of Phytophthora palmivora zoospores: electron microscopy of cell attachment and cyst wall fibril formation

1975 ◽  
Vol 18 (1) ◽  
pp. 123-132
Author(s):  
V.O. Sing ◽  
S. Bartnicki-Garcia

Zoospores of Phytophthora palmivora adhered to a plastic film surface were examined by electron microscopy. Three stages of adhesion were compared: (1) non-adhesive, unencysted zoospores, (2) adhered incipient cysts, and (3) adhered mature cysts. Thin sections of incipient cysts revealed cells attached to the film surface through the partially discharged contents of the so-called peripheral vesicles; this seems to be the first step in cell adhesion. In mature cysts, the adhesive appeared to have been compacted into an electron-dense deposit binding the cyst wall to the plastic surface. The adhesion zone was also examined in face view after lysing attached incipient cysts with sodium dodecyl sulphate. Cyst wall microfibrils were seen together with an amorphous substance (presumably the adhesive material). The microfibrils were in various stages of formation. Seemingly, adhesion and microfibril formation take place concurrently. The possibility was considered that the material contained in the peripheral vesicles serves in both cell adhesion and microfibril elaboration.

1982 ◽  
Vol 94 (3) ◽  
pp. 613-623 ◽  
Author(s):  
J Aggeler ◽  
Z Werb

The initial events during phagocytosis of latex beads by mouse peritoneal macrophages were visualized by high-resolution electron microscopy of platinum replicas of freeze-dried cells and by conventional thin-section electron microscopy of macrophages postfixed with 1% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces. These resulted suggest that phagocytosis shares features not only with cell attachment and spreading but also with receptor-mediated pinocytosis.


1978 ◽  
Vol 78 (2) ◽  
pp. 597-621 ◽  
Author(s):  
J Metuzals ◽  
I Tasaki

A new technique utilizing the squid giant nerve fiber has been developed which permits direct examination of the inner face of the axolemma by scanning electron microscopy. The axoplasm was removed sequentially in a 15-mm long segment of the fiber by intracellular perfusion with a solution of KF, KCl, Ca++-containing seawater, or with pronase. The action potential of the fibers was monitored during these treatments. After brief prefixation in 1% paraformaldehyde and 1% glutaraldehyde, the perfused segment was opened by a lne could be related to information on the detailed morphology of the cytoplasmic face of the axolemma and the ectoplasm. The results obtained by scanning electron microscopy were further substantiated by transmission electron microscopy of thin sections. In addition, living axons were studied with polarized light during axoplasm removal, and the identification of actin by heavy meromyosin labeling and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was accomplished. These observations demonstrate that a three-dimensional network of interwoven filaments, consisting partly of an actinlike protein, is firmly attached to the axolemma. The axoplasmic face of fibers in which the filaments have been removed partially after perfusion with pronase displays smooth membranous blebs and large profiles which sppose the axolemma. In fibers where the excitability has been suppressed by pronase perfusion, approximately one-third of the inner face of the axolemma in the perfusion zone is free of filaments. It is hypothesized that the attachment of axoplasm filaments to the axolemma may have a role in the maintenance of the normal morphology of the axolemma, and, thus, in some aspect of excitability.


1975 ◽  
Vol 65 (1) ◽  
pp. 65-74 ◽  
Author(s):  
R R Gould

The assembly and composition of basal bodies was investigated in the single-celled, biflagellate green alga, Chlamydomonas reinhardtii, using the cell wall-less strain, cw15. In the presence of EDTA, both flagellar axonemes remained attached to their basal bodies while the entire basal body-axoneme complex was separated from the cell body, without cell lysis, by treatment with polyethylene glycol-400. The axonemes were then removed from the basal bodies in the absence of EDTA, leaving intact basal body pairs, free from particulate contamination from other regions of the cell. The isolated organelles produced several bands on sodium dodecyl sulfate-urea polyacrylamide gels, including two tubilin bands which co-electrophoresed with flagellar tubulin. The formation of probasal bodies was observed by electron microscopy of whole mount preparations. Synchronous cells were lysed, centrifuged onto carbon-coated grids, and either negatively stained or shadowed with platinum. The two probasal bodies of each cell appeared shortly after mitosis as thin "annuli," not visible in thin sections, each consisting of nine rudimentary triplet microtubules. Each annulus remained attached to one of the mature basal bodies by several filaments about 60 in diameter, and persisted throughout interphase until just before the next cell division. It then elongated into a mature organelle. The results revive the possibility of the nucleated assembly of basal bodies.


Nephron ◽  
2021 ◽  
pp. 1-5
Author(s):  
Gabriel Giannini ◽  
Lois J. Arend

<b><i>Introduction:</i></b> Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults and can be primary or secondary. The antigenic target of antibodies in 70% of primary cases is phospholipase A2 receptor (PLA2R). The presence or absence of mesangial electron-dense deposits has been used to distinguish between primary and secondary MN. Mesangial deposits suggest MN due to lupus, infection, or other causes, though they are reported to occur in approximately 10% of primary MN. Staining for PLA2R is now frequently used for confirming a diagnosis of primary MN. If mesangial deposits predict a secondary cause, they should be more frequent in PLA2R-negative biopsies. <b><i>Methods:</i></b> A review of institutional kidney biopsies between March 2017 and June 2020 identified all cases of MN. Cases with a diagnosis of lupus or near “full-house” staining by immunofluorescence microscopy (IF) were excluded. Light microscopy, IF, and electron microscopy (EM) were performed. PLA2R staining was performed by IF. EM for all cases was reviewed and electron-dense deposit location, distribution, and size were determined. <b><i>Results:</i></b> Ninety-three cases of MN were identified, of which 86 had both PLA2R staining and EM performed. Of these, 51 cases (59%) were positive for PLA2R and 35 (41%) were negative. Mesangial electron-dense deposits were present in 22 (25.6%) of the 86 cases, including 27.5% (14/51) of PLA2R-positive cases and 22.8% (8/35) of PLA2R-negative cases. No difference was seen in size or distribution of deposits, or other features considered suggestive of secondary MN. <b><i>Conclusion:</i></b> PLA2R-negative cases were not more likely to have mesangial deposits than PLA2R-positive cases. Mesangial deposits should not be used as an indicator of secondary MN.


2005 ◽  
Vol 18 (8) ◽  
pp. 808-818 ◽  
Author(s):  
Won-Seok Kim ◽  
Jeong Sun-Hyung ◽  
Ro-Dong Park ◽  
Kil-Yong Kim ◽  
Hari B. Krishnan

Calcium, which regulates a wide variety of cellular functions, plays an important role in Rhizobium-legume interactions. We investigated the effect of calcium on surface appendages of Sinorhizobium fredii USDA257. Cold-field emission scanning electron microscopy observation of USDA257 grown in calcium-limiting conditions revealed cells with unusual shape and size. Transmission electron microscopy observation revealed intact flagella were present only when USDA257 cells were grown in calcium-sufficient conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of flagellar preparations from USDA257 cells grown in calcium-limiting conditions showed the presence of a 22-kDa protein that was absent from cells grown in calcium-sufficient conditions. We have cloned and determined the nucleotide sequence of the gene encoding the 22- kDa protein. After successful expression in Escherichia coli, polyclonal antibodies were raised against the recombinant 22-kDa protein (Omp22). Subcellular fractionation analysis demonstrated that Omp22 was predominantly present in the extracellular fraction. Western blot analysis revealed the presence of immunologically related proteins from diverse rhizobia. Immunocytochemical localization of thin sections of USDA257 cells showed specific labeling of protein A-gold particles on protein inclusions found proximal to the cells. Accumulation of Omp22 was greatly reduced when USDA257 cells were grown in the presence of increasing calcium. Northern blot analysis indicated that calcium was the only divalent cation among those tested that down-regulated omp22 expression. An omp22 mutant was able to grow in calcium-limiting conditions at a rate similar to that of wild-type USDA257. Significantly more nodules were initiated by the omp22 mutant than by the wild-type on soybean cultivar Peking grown in calciumlimiting conditions.


1987 ◽  
Author(s):  
G Escolar ◽  
J Monteagudo ◽  
N Villamor ◽  
M Garrido ◽  
R Castillo

Changes in the morphology of human platelets induced by Ristocetin (RIPA) have been analyzed at ultraestructural level by means of a tannine acid procedure. Studies were completed with aggregation and binding experiments. Modificationsof these tests induced by apyrase,a monoclonal antibody (Mab) to GPIIb/IIIa and EDTA were also investigated.Transmission electron microscopy reveals that ristocetin precipitates adhesive proteins on plateletmembrane. An electron-dense deposit was noticeable within 20 secondsafter ristocetin was added. When experiments were carried out in theaggregometer cuvette under stirring, groups of platelets become activated, change shape, and finally aggregate releasing part of their content. The morphology of aggregates did not differ from those formed in the presence of ADP.Aggregation studies demonstrated that a Mab to GPIIb/IIIa modifies the extent and the rate of the aggregation curve when RIPA was performed in citrated platelet rich plasma (c-PRP). Apyrase modified the extent but not the slope of the curve. Neither the antibody nor apyrase modified RIPA when it was performed in PRP obtained in presence of EDTA. Binding experiments confirmed that I-vWF bound to platelets in presence of ristocetin was not modified by apyrase or anti-GPIIb/IIIa Mab. All these facts together suggest that RIPA,when performed in c-PRP besides reflecting the interaction of GPI with vWF, is also testing other mechanisms of the platelet function including exposure of GPIIb/IIIa complex, interaction of fibrinogen with this glycoprotein, and the contribution of the release reaction.


1988 ◽  
Vol 34 (1) ◽  
pp. 12-18 ◽  
Author(s):  
S. G. Walker ◽  
T. J. Beveridge

Amikacin, an aminoglycoside known to inhibit protein synthesis, was found to perturb the outer membrane of a sensitive Pseudomonas aeruginosa strain (ATCC 9027). This perturbation was monitored using electron microscopy and biochemical analyses. Following exposure to 20 μg amikacin/mL for 15 min, the outer membrane of exponentially growing cells lost 15% of its protein, 18% of its lipopolysaccharide, and 18% of its phosphate. Sodium dodecyl sulphate – polyacrylamide gel electrophoresis showed that the whole spectrum of outer membrane protein and lipopolysaccharide was affected. Similarly, atomic absorption spectrophotometry revealed that magnesium and calcium were also lost. When cells were treated with amikacin, electron microscopy of negative stains showed a substantial increase in outer membrane blebbing. Freeze fractures revealed changes in membrane fracture pattern and particle distribution, and thin sections revealed a sequential disruption of the cell envelope beginning at the outer membrane and ending at the plasma membrane. This study supports the proposal that aminoglycoside antibiotics cross the outer membrane of Pseudomonas aeruginosa by displacing metal cations necessary to stabilize the organic constituents of the membrane. Their removal results in loss of the outer membrane and the formation of transient small holes which permit the antibiotic access to the cytoplasmic membrane where it is transported into the cytoplasm.


1983 ◽  
Vol 31 (3) ◽  
pp. 404-410 ◽  
Author(s):  
S C Ho ◽  
L Huang

The endocytosis of large unilamellar liposomes composed of phosphatidylcholine by the cultured Chinese hamster V-79 cells is demonstrated with electron microscopy cytochemistry. A novel cytochemical marker, 5-Br,4-Cl,3-indolylphosphate (BCIP) is used. This marker is a soluble and colorless substrate for the lysosomal acid phosphatase and can be readily entrapped in liposomes. The product of the enzymatic reaction, 5-Br,4-Cl,3-hydroxy indole, rapidly self-condenses and becomes an insoluble derivative of indigo blue. In thin section transmission electron microscopy, the condensed product appears as electron-dense deposits in the lysosomes. Since the electron-dense deposit only appears when the endocytosed liposomes are delivered to the lysosomes as the result of phagosome-lysosome fusion, this marker provides a unique cytochemical means to reveal those liposomes that are lysosomotropic and are actually decomposed within the lysosomes. No electron-dense deposits are found in the liposome-treated cells in the presence of chloroquine, or a combination of NaN3 and deoxyglucose. As a comparison, we have also used horseradish peroxidase entrapped in liposomes to confirm the endocytic uptake of liposomes. Using a radioactive marker, 125I-labeled lysozyme, entrapped in liposomes, it is shown that about 20-30% of liposome uptake by V-79 cells is due to endocytosis.


2002 ◽  
Vol 68 (9) ◽  
pp. 4653-4657 ◽  
Author(s):  
Anton A. Korenevsky ◽  
Evgeny Vinogradov ◽  
Yuri Gorby ◽  
Terry J. Beveridge

ABSTRACT Electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining and 1H, 13C, and 31P-nuclear magnetic resonance (NMR) were used to detect and characterize the lipopolysaccharides (LPSs) of several Shewanella species. Many expressed only rough LPS; however, approximately one-half produced smooth LPS (and/or capsular polysaccharides). Some LPSs were affected by growth temperature with increased chain length observed below 25°C. Maximum LPS heterogeneity was found at 15 to 20°C. Thin sections of freeze-substituted cells revealed that Shewanella oneidensis, S. algae, S. frigidimarina, and Shewanella sp. strain MR-4 possessed either O-side chains or capsular fringes ranging from 20 to 130 nm in thickness depending on the species. NMR detected unusual sugars in S. putrefaciens CN32 and S. algae BrYDL. It is possible that the ability of Shewanella to adhere to solid mineral phases (such as iron oxides) could be affected by the composition and length of surface polysaccharide polymers. These same polymers in S. algae may also contribute to this opportunistic pathogen's ability to promote infection.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document