scholarly journals Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration

2017 ◽  
Vol 131 (1) ◽  
pp. jcs205393 ◽  
Author(s):  
Kasper J. Mygind ◽  
Jeanette Schwarz ◽  
Pranshu Sahgal ◽  
Johanna Ivaska ◽  
Marie Kveiborg
2012 ◽  
Vol 214 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Jorge Diaz ◽  
Evelyn Aranda ◽  
Soledad Henriquez ◽  
Marisol Quezada ◽  
Estefanía Espinoza ◽  
...  

Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3 h and returning to basal levels at 18 h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.


2010 ◽  
Vol 207 (11) ◽  
pp. 2421-2437 ◽  
Author(s):  
Yingjie Xu ◽  
Tarek A. Bismar ◽  
Jie Su ◽  
Bin Xu ◽  
Glen Kristiansen ◽  
...  

The actin cross-linking protein filamin A (FLNa) functions as a scaffolding protein and couples cell cytoskeleton to extracellular matrix and integrin receptor signaling. In this study, we report that FLNa suppresses invasion of breast cancer cells and regulates focal adhesion (FA) turnover. Two large progression tissue microarrays from breast cancer patients revealed a significant decrease of FLNa levels in tissues from invasive breast cancer compared with benign disease and in lymph node–positive compared with lymph node–negative breast cancer. In breast cancer cells and orthotopic mouse breast cancer models, down-regulation of FLNa stimulated cancer cell migration, invasion, and metastasis formation. Time-lapse microscopy and biochemical assays after FLNa silencing and rescue with wild-type or mutant protein resistant to calpain cleavage revealed that FLNa regulates FA disassembly at the leading edge of motile cells. Moreover, FLNa down-regulation enhanced calpain activity through the mitogen-activated protein kinase–extracellular signal-regulated kinase cascade and stimulated the cleavage of FA proteins. These results document a regulation of FA dynamics by FLNa in breast cancer cells.


2007 ◽  
Vol 120 (11) ◽  
pp. 1927-1934 ◽  
Author(s):  
Y.-y. Chuang ◽  
A. Valster ◽  
S. J. Coniglio ◽  
J. M. Backer ◽  
M. Symons

Sign in / Sign up

Export Citation Format

Share Document