scholarly journals The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly

2019 ◽  
Vol 132 (17) ◽  
pp. jcs233502 ◽  
Author(s):  
Cameron Dale MacQuarrie ◽  
MariaSanta C. Mangione ◽  
Robert Carroll ◽  
Michael James ◽  
Kathleen L. Gould ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Cameron MacQuarrie ◽  
MariaSanta Mangione ◽  
Robert Carroll ◽  
Michael James ◽  
Kathleen L. Gould ◽  
...  

ABSTRACTArp2/3 complex-nucleated branched actin networks provide the force necessary for endocytosis. The Arp2/3 complex is activated by Nucleation Promoting Factors (NPFs) including the Schizosaccharomyces pombe proteins WASp Wsp1 and myosin-1 Myo1. There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. We used quantitative live cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with verprolin Vrp1 for Myo1 binding, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalize with the endocytic vesicle; however, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination and endocytic invaginations are twice as long. We propose that Bbc1 disrupts a transient Myo1-Vrp1-Wsp1 interaction and limits Arp2/3 complex-nucleation of actin branches at the plasma membrane.


2005 ◽  
Vol 25 (8) ◽  
pp. 2910-2923 ◽  
Author(s):  
Christopher J. Stefan ◽  
Steven M. Padilla ◽  
Anjon Audhya ◽  
Scott D. Emr

ABSTRACT The Saccharomyces cerevisiae synaptojanin-like proteins (Sjl1, Sjl2, and Sjl3) are phosphoinositide (PI) phosphatases that regulate PI metabolism in the control of actin organization and membrane trafficking. However, the primary sites of action for each of the yeast synaptojanin-like proteins remain unclear. In this study, we show that Sjl2 is localized to cortical actin patches, sites of endocytosis. Cortical recruitment of Sjl2 requires the actin patch component Abp1. Consistent with this, the SH3 domain-containing protein Abp1 physically associates with Sjl2 through its proline-rich domain. Furthermore, abp1Δ mutations confer defects resembling loss of SJL2; sjl1Δ abp1Δ double-mutant cells exhibit invaginated plasma membranes and impaired endocytosis, findings similar to those for sjl1Δ sjl2Δ mutant cells. Thus, Abp1 acts as an adaptor protein in the localization or concentration of Sjl2 during late stages of endocytic vesicle formation. Overexpression of the Hip1-related protein Sla2 delayed the formation of extended plasma membrane invaginations in sjl2 ts cells, indicating that Sla2 may become limiting or misregulated in cells with impaired PI phosphatase activity. Consistent with this, the cortical actin patch protein Sla2 is mislocalized in sjl1Δ sjl2Δ mutant cells. Together, our studies suggest that PI metabolism by the synaptojanin-like proteins coordinately directs actin dynamics and membrane invagination, in part by regulation of Sla2.


2014 ◽  
Author(s):  
Baile Wang ◽  
Kenneth KY Cheng ◽  
Xiaomu Li ◽  
Karen SL Lam ◽  
Aimin Xu

2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


Sign in / Sign up

Export Citation Format

Share Document