Fine Structure Study of Pollen Development in Haemanthus katherinae Baker

1971 ◽  
Vol 8 (2) ◽  
pp. 289-301
Author(s):  
JEAN M. SANGER ◽  
W. T. JACKSON

When microspores of the African blood lily divide, they form pollen grains which consist of 2 cells of unequal size. This is accomplished when the microspore nucleus is displaced from the centre of the grain prior to division. The displacement is always towards the side of the grain opposite the furrow, and large vacuoles form in the cytoplasm between the furrow and the nucleus. During cell division the cell plate curves around one daughter nucleus and fuses with the pollen wall to enclose the generative cell. The cell-plate attachment always occurs with the wall that is opposite the furrow of the grain. Most of the microspore's organelles become incorporated in the larger vegetative cell, whereas the generative cell has few, if any, plastids and only a small number of other organelles. The wall around the generative cell is composed of finely fibrillar material enclosed within 2 unit membranes. The generative cell eventually becomes detached from the pollen wall, becomes spheroidal, and moves to a position near the centre of the pollen grain. At the same time, the large vacuoles disappear from the vegetative cell and the number of organelles increases substantially.

1971 ◽  
Vol 8 (2) ◽  
pp. 303-315
Author(s):  
JEAN M. SANGER ◽  
W. T. JACKSON

The newly formed generative cell of the pollen grain of the African blood lily is spheroidal after its detachment from the pollen wall. Plastids are almost always excluded from the generative cell, while dictyosomes, mitochondria, ribosomes, endoplasmic reticulum, and microtubules are present throughout development of the cell. During the time that the generative cell is spheroidal, microtubules are found scattered randomly throughout the cytoplasm. The cell subsequently elongates and concurrently an oriented system of microtubules appears along the wall of the cell. The microtubules are aligned with their long axes parallel to the long axis of the cell. This system of microtubules persists in the generative cell throughout its development. The microtubules can be destroyed by exposure to isopropyl N-phenylcarbamate or colchicine and as a result the generative cell reverts to a near spheroidal shape.


1975 ◽  
Vol 53 (10) ◽  
pp. 1051-1062 ◽  
Author(s):  
David D. Cass ◽  
Ilana Karas

Ultrastructural events in barley sperm development were examined from the uninucleate microspore stage to establishment of two mature sperm cells in pollen grains. Microspore mitosis produces a vegetative nucleus and a naked generative cell, both embedded in vegetative cell cytoplasm. The generative cell membrane is enclosed by vegetative cell membrane. The generative cell, at first apparently unattached, becomes attached to the pollen wall and acquires a cell wall by centripetal vesicle accumulation. Wall formation may be complete at the time of generative cell karyokinesis; karyokinesis occurs while the generative cell is attached to the pollen wall. Cytokinesis of the generative cell is delayed. The subsequent stage is a binucleate, attached generative cell with a wall. Generative cell cytokinesis appears to involve formation of a partition between the two sperm nuclei. Eventual complete separation of the sperm cells occurs only after the two-celled derivative of the generative cell detaches from the pollen wall. Final stages in sperm cell separation are considered to result from degradation of the partitioning and surrounding wall, not from furrowing of a naked binucleate generative cell according to previous suggestions. Mature plastids were not observed in the generative cell or the sperms.


2014 ◽  
Vol 53 (2) ◽  
pp. 145-158 ◽  
Author(s):  
Elżbieta Bednarska

RNA and protein synthesis were investigated in generative and vegetative cells during maturation of pollen grains. The rate of RNA and protein synthesis was analysed in reference to the successive interphase periods of the life cycle of pollen cells as well as against the background of the growth dynamics of the cell volume. The results of studies demonstrated that the pollen grain increases in size owing to the growth of the vegetative cell. The generative one does not grow. RNA synthesis and that of proteins in differentiating pollen cells has a different course. In the growing vegetative cell it lasts longer and is more intensive than in the generative cell which does not grow. RNA and protein synthesis in the vegetative cell take place in the period from the callose stage to the stage of lemon-shaped generative cell, that is in the period of phases G<sub>1</sub>, S and G<sub>2</sub>. This synthesis is positively correlated with the growth of the pollen grain. RNA and protein synthesis in the generative cell comprises the period from the callose-less lenticular stage to the stage of spherical generative cell, that is the phases S and early phase G<sub>2</sub>. These results suggest that in the vegetative cell RNA and protein synthesis is utilised above all to increase of its cell, instead in non growing generative cell protein synthese is probably limited mostly to a histones and enzymatic proteins serving for the DNA replication process.


2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


2014 ◽  
Vol 50 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Elżbieta Bednarska

DNA and histone synthesis in five consecutive morphological stages of <em>Hyacinthus orientalis</em> L. pollen grain differentiation were studied autoradiographically. DNA synthesis was found to occur in both the generative and the vegetative cell. DNA replication in the generative cell took place when the generative cell was still adhered to the pollen grain wall but already devoid of callose wall. DNA synthesis in the generative cell slightly preceded that in the vegetative cell. Histones were synthesized in phase S of the generative and vegetative cell. In the generative cell histone synthesis also continued at a lower level after completion of DNA replication. In the developmental stages under study the nuclei of the generative cells were decidedly richer in lysine histones than vegetative cell nuclei.


2013 ◽  
Vol 19 (6) ◽  
pp. 1535-1541 ◽  
Author(s):  
Alisoun House ◽  
Kevin Balkwill

AbstractPollen grain morphology has been widely used in the classification of the Acanthaceae, where external pollen wall features have proved useful in determining relationships between taxa. Although detailed information has been accumulated using light microscopy, transmission electron microscopy and scanning electron microscopy (SEM) techniques, internal pollen wall features lack investigation and the techniques are cumbersome. A new technique involving precise cross sectioning or slicing of pollen grains at a selected position for examining wall ultrastructure, using a focused ion beam-scanning electron microscope (FIB-SEM), has been explored and promising results have been obtained. The FIB-SEM offers a good technique for reliable, high resolution, three-dimensional (3D) viewing of the internal structure of the pollen grain wall.


2014 ◽  
Vol 57 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Elżbieta Bednarska

The sequence of ultrastructural changes in the cytoplasm during the successive stages of pollen grain development in <em>Hyacinthus orientulis</em> pollen cells was studied. The cytoplasmic transformations of the generative cell included the elimination of plastids, increase in the number of mitochondria, assumption of a spindle shape with the aid of microtubules and the characteristic development of the vacuole system with the formation of so-called colored bodies. The cytoplasmic transformations of the generative cell encompassed changes in the plastids, which began to accumulate starch soon after the cell was formed, then released it shortly before anthesis, an increase in the number of mitochondria and an increase in the number of highly active dictyosomes just before anthesis. Changes in the structure of the border region between the differentiating pollen cells were associated mainly with the periodical appearance of a callose wall and the presence of lysosome-like bodies in the cytoplasm of the vegetative cell surrounding the generative cell. They arose soon after the disappearance of the callose wall and disappeared shortly before anthesis.


1963 ◽  
Vol 18 (12) ◽  
pp. 1092-1097 ◽  
Author(s):  
Lothar Diers

According to the intense activity of the vegetative cell in the germinating pollen grain, the cytoplasm shows a highly organized structure. Concerning the structure the vegetative cell differs strongly from the generative cell. In the vegetative cell the big nucleus shows a very lobed shape. Large invaginations of the cytoplasm into the nucleus can be frequently observed. Series of adjacent sections show that deep and flat vesicles which may often broaden to unusual large cisternae, extend through the vegetative plasm and form by interconnections a highly developed endoplasmic reticulum which is continuous with the nuclear envelope. The leucoplasts contain large starch grains and very few lamellae, in many sections only one lamella is visible. Sometimes, a process of a leucoplast deeply reaches into another leucoplast. In some leucoplasts and mitochondria there are concentric stripes which, according to serial sections, are the margins of invaginations of the cytoplasm or of another organell. In the numerous mitochondria the inner folds have the form of cristae, tubules are not so frequently seen. The edges of the flattened sacs of the Golgi - apparatus expand to vacuoles which seem to separate from the flattened cisternae. Typical for the vegetative plasm are numerous small vacuoles. Relatively large, ringshaped or uniform dark bodies are assumed to be lipid inclusions.


Author(s):  
M.I. Rodriguez-Garcia ◽  
M.C. Risueno

This report deals with research work on first pollen grain mitosis and the formation of vegetative and generative cells in Allium cepa L.The haploid nucleus of young microspores has a long interphase period which starts when the microspores begin to free themselves from the surrounding special callose wall and finishes when a central vacuole is formed in their cytoplasm. The pollen wall (Exine and Intine) is formed during this period.Before the mitosis, a large vacuole is formed in the cytoplasm. The microspore nucleus that previously occupied a central position in the cell can now be found in a lateral position generally on the opposite side of the porus. At this moment the nucleus enters prophase and the mitotic division takes place. This is characterized by the formation of an asymmetric spindle and as a result two unequal daughter cells are formed (Fig. 1) : the vegetative cell is larger and its nucleus remains near the centre of the pollen grain, whilst the generative cell is smaller and at the beginning lies close to the pollen wall (Fig. 2, 3).


1971 ◽  
Vol 8 (2) ◽  
pp. 317-329
Author(s):  
JEAN M. SANGER ◽  
W. T. JACKSON

The newly formed vegetative cell of the pollen grain of the African blood lily has a spheroidal nucleus, few dictyosomes, and a small amount of endoplasmic reticulum. Plastids are smaller than those of the microspore and usually lack starch granules. Mitochondria and lipid bodies are more numerous than they were in the microspores, but their appearance is unchanged. As the pollen grain matures, the vegetative nucleus becomes irregular in shape. There is a dramatic increase in the number of dictyosomes, starch accumulates in the plastids, and a moderately well developed system of endoplasmic reticulum appears in the form of flat cisternae. In the developmental period immediately preceding anthesis, the vegetative nucleus becomes lobate and small nucleoli replace the large nucleoli present earlier. Plastids lose their starch, lipid bodies disappear, and the endoplasmic reticulum becomes vesicular in this final stage before germination.


Sign in / Sign up

Export Citation Format

Share Document