The extracellular electrical current pattern and its variability in vitellogenic Drosophila follicles

1986 ◽  
Vol 81 (1) ◽  
pp. 189-206 ◽  
Author(s):  
J. Bohrmann ◽  
A. Dorn ◽  
K. Sander ◽  
H. Gutzeit

We determined the extracellular electrical current pattern around Drosophila follicles at different developmental stages (7–14) with a vibrating probe. At most stages a characteristic pattern can be recognized: current leaves near the oocyte end of the follicle and enters at the nurse cells. Only at late vitellogenic stages was an inward-directed current located at the posterior pole of many follicles. Most striking was the observed heterogeneity both in current pattern and in current density between follicles of the same stage. Different media (changed osmolarity or pH, addition of cytoskeletal inhibitors or juvenile hormone) were tested for their effects on extrafollicular currents. The current density was consistently influenced by the osmolarity of the medium but not by the other parameters tested. Denuded nurse cells (follicular epithelium locally stripped off) show current influx, while an accidentally denuded oocyte produced no current. Our results show that individual follicles may be electrophysiologically different, though their uniform differentiation during vitellogenesis does not reflect such heterogeneity.

1975 ◽  
Vol 53 (8) ◽  
pp. 1187-1188 ◽  
Author(s):  
Randa Abu-Hakima ◽  
K. G. Davey

The follicular epithelium of vitellogenic oocytes from allatectomized females of Rhodnius fails to develop large intercellular spaces when exposed to juvenile hormone (JH) in vitro. This suggests that in the normal animal, the follicle cells require JH at two developmental stages. Differentiation of the cells in the presence of JH represents one requirement, and only those cells which have undergone this initial priming are fully competent to exhibit the second response, the development of intercellular spaces.


1986 ◽  
Vol 81 (1) ◽  
pp. 207-221 ◽  
Author(s):  
J. Bohrmann ◽  
E. Huebner ◽  
K. Sander ◽  
H. Gutzeit

We measured the intracellular electrical potential in oocyte and nurse cells of Drosophila follicles at different developmental stages (6–14) and determined the intrafollicular potential difference. During stages 8–10B, when intrafollicular transport is known to occur, no significant potential difference was found. During late vitellogenic stages the nurse cells assume a more positive potential than the oocyte. This result contrasts with the published data on Hyalophora follicles, in which intercellular electrophoresis of negatively charged proteins occurs from nurse cells to oocyte as a result of an intrafollicular potential difference (nurse cells more negative than the oocyte). Such a potential difference was not observed in Drosophila follicles at any stage, not even after application of juvenile hormone. The extrafollicular electrical field is described with a dipole model. The hypothetical dipole is located in the long axis of the follicle and changes its calculated length stage-specifically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Musa Ahmed ◽  
Ibnelwaleed A. Hussein ◽  
Abdulmujeeb T. Onawole ◽  
Mohammed A. Saad ◽  
Mazen Khaled

AbstractPyrite scale formation is a critical problem in the hydrocarbon production industry; it affects the flow of hydrocarbon within the reservoir and the surface facilities. Treatments with inorganic acids, such as HCl, results in generation toxic hydrogen sulfide, high corrosion rates, and low dissolving power. In this work, the dissolution of pyrite scale is enhanced by the introduction of electrical current to aid the chemical dissolution. The electrolytes used in this study are chemical formulations mainly composed of diethylenetriamine-pentaacetic acid–potassium (DTPAK5) with potassium carbonate; diethylenetriamine pentaacetic acid sodium-based (DTPANa5), and l-glutamic acid-N, N-diacetic acid (GLDA). DTPA and GLDA have shown some ability to dissolve iron sulfide without generating hydrogen sulfide. The effect of these chemical formulations, disc rotational rate and current density on the electro-assisted dissolution of pyrite are investigated using Galvanostatic experiments at room temperature. The total iron dissolved of pyrite using the electrochemical process is more than 400 times higher than the chemical dissolution using the same chelating agent-based formulation and under the same conditions. The dissolution rate increased by 12-folds with the increase of current density from 5 to 50 mA/cm2. Acid and neutral formulations had better dissolution capacities than basic ones. In addition, doubling the rotational rate did not yield a significant increase in electro-assisted pyrite scale dissolution. XPS analysis confirmed the electrochemical dissolution is mainly due to oxidation of Fe2+ on pyrite surface lattice to Fe3+. The results obtained in this study suggest that electro-assisted dissolution is a promising technique for scale removal.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
The Huyen Nguyen ◽  
Tuan Anh Nguyen ◽  
Thien Vuong Nguyen ◽  
Van Khu Le ◽  
Thi Mai Thanh Dinh ◽  
...  

The electrical rehabilitation treatments of repair mortar were performed with tetrabutylammonium bromide salt (TBAB) at an electrical current density of 5 A/m2, using two electrolytes (0.1 M NaOH and 0.1 M Na3BO3solutions), and for two time periods (1 and 4 weeks), respectively. The average organic cation-based inhibitor’s concentration in cement mortars before and after this treatment was quantified using the UV-Vis spectroscopy. The experimental results reveal that the EICI treatment with 0.1 M Na3BO3was more effective in injecting the inhibitor and in improving the chloride penetration resistance and compressive strength of the mortar, relative to using 0.1 M NaOH as electrolyte. In this case, after the 4-week EICI treatment, [TBA+] contents were 2.3 % and 2.4% by mass of cement mortar for uncontaminated and salt-contaminated mortars, respectively. After the 4-week EICI treatment, the apparent diffusion coefficients of chloride anion in cement mortar were decreased by 40% from 1.52 × 10−10 m2/s. The EICI treatment was able to halt the chloride-induced corrosion of the steel rebar by promoting its passivation. The 2-week EICI treatment using sodium hydroxide and sodium borate solutions decreased the corrosion current density of the rebar by 77.8% and 78.5%, respectively, approximately two months after the treatment.


2005 ◽  
Vol 86 (23) ◽  
pp. 234101 ◽  
Author(s):  
Roberto S. Aga ◽  
Xiang Wang ◽  
Jonathan Dizon ◽  
Jesse Noffsinger ◽  
Judy Z. Wu

2019 ◽  
Vol 14 (1) ◽  
pp. 1-5
Author(s):  
Victor De Rezende Cunha ◽  
Daniel Neves Micha ◽  
Rudy Massami Sakamoto Kawabata ◽  
Luciana Dornelas Pinto ◽  
Mauricio Pamplona Pires ◽  
...  

Electrical current mismatching is a well-known limitation of triple junction solar cells that lowers the final conversion efficiency. Several solutions have been proposed to face this issue, including the insertion of a multiple quantum well structure as the intermediate junction’s active material. With a better matching in the current among the junctions, the total current increases, thus modifying the working conditions of the overall device. In this way, the InGaP top junction needs to be optimized to such new condition. In this work, numerical simulations were carried out aiming the enlargement of the electrical current density of an InGaP pn junction to achieve the proper current matching in triple junction solar cell for spatial applications. The optimized structure has been grown in a GaAs substrate and characterized as a single junction solar cell. Although the measured short circuit current density and conversion efficiency are still well below the theoretically predicted values, processing improvement should lead to adequate cell performance.


1973 ◽  
Vol 63 (1) ◽  
pp. 7-16 ◽  
Author(s):  
I. Gelbič ◽  
F. Sehnal

AbstractLaboratory experiments with juvenile hormone analogues on Cydia pomonella (L.) showed that Cecropia C17 juvenile hormone (methyl 10,ll-epoxy-3,7,ll-trimethyl-2,6-dodecadienoate) was the most active of the 28 compounds tested. When applied to four-hour-old eggs at 0.1 μg/egg, the hormone caused 100% failure in embryogenesis, while the other compounds were at least five times less effective. Depending on the time since ecdysis and the dose, juvenile hormone mimics applied to last-instar larvae resulted in a wide range of intermediate forms. Against three-day-old last-instar larvae, the Cecropia C17 hormone gave 100% inhibition of development at a dose of 1 μg/larva, while three other compounds (methyl 10,11-epoxy-3,7,11-trimethyl-2,6-dodecadienoate, ethyl 11-chloro-3,7,11-trimethyl-2-dodecenoate and ethyl 3,7,11-tri-methyl-2,4-dodecadienoate) gave the same effect at 2–5 μg/larva. Against newly emerged adults, the last two compounds at 10–50 μg/insect reduced fecundity and fertility to 0–81% and 0–50%, respectively, of their normal levels.


1983 ◽  
Vol 61 (7) ◽  
pp. 826-831 ◽  
Author(s):  
T. T. Ilenchuk ◽  
K. G. Davey

A comparison has been made of the effects of juvenile hormone (JH) on the binding characteristics for ouabain of microsomes prepared from brain and from cells of the follicular epithelium surrounding previtellogenic or vitellogenic oocytes in Rhodnius. JH has no effect on the binding of ouabain to brain microsomes and decreases the Kd, but does not alter the Bmax for previtellogenic follicle cells. For vitellogenic follicle cells, Scatchard analysis reveals a curvilinear relationship, which is interpreted as indicating that a new population of JH-sensitive ouabain-binding sites develops as the follicle cell enters vitellogenesis. These results are related to earlier data obtained on the effect of JH on ATPase activity, volume changes in isolated follicle cells, and the development of spaces between the cells of the follicular epithelium.


Sign in / Sign up

Export Citation Format

Share Document